
- Photonics Research
- Vol. 10, Issue 7, 1703 (2022)
Abstract
1. INTRODUCTION
Since the BB84 protocol was proposed in 1984 [1], quantum key distribution (QKD) has been studied for so many years in both theories and experiments [2–6]. The decoy-state BB84 protocol [7–9] was widely used in the experiments [10–14] and QKD networks [15–17] in which the decoy-state method can ensure the security of QKD with imperfect single-photon sources. Recently, an integrated space-to-ground quantum communication network over 4600 km was demonstrated by applying the decoy-state BB84 protocol [18]. But, in principle, the detectors in the BB84 protocol could be hacked by an eavesdropper due to the imperfections of the detectors [19,20]. Although there are some defense strategies against known attacks, we need a more robust method to protect the security with imperfect detectors.
Based on the virtual entanglement swapping, measurement-device-independent (MDI)-QKD protocol [21,22] can repair all the detection side vulnerabilities. The three-intensity MDI-QKD protocol [23–25] can ensure the security with both imperfect single-photon sources and detectors, but the key rate is pretty low. Many improved schemes were proposed to increase the key rate [26–29]. Among all those, the four-intensity MDI-QKD protocol [29] can improve the key rate by several orders of magnitude and becomes the mainstream of MDI-QKD protocol. The four-intensity MDI-QKD protocol has been applied to the experiments of long-distance MDI-QKD [30], free-space MDI-QKD [31], chip-based MDI-QKD [32–34], high-speed MDI-QKD [35], and so on [36,37]. Based on the four-intensity MDI-QKD protocol [29], we proposed a double-scanning method [38], which can further improve the key rate by up to 280% in typical experiment conditions. The double-scanning method [38] with four-intensity MDI-QKD protocol has been applied in a recent experiment [39].
Recently, based on single-photon interference, twin-field (TF)-QKD [40] was proposed. The TF-QKD can raise the key rate from the linear scale to square root scale of channel transmittance and break the PLOB bound [41], the key rate limit of repeaterless QKD. TF-QKD protocol and its variants [42–45] have been widely studied in theories [46–51] and experiments [52–57]. Specially, sending-or-not-sending (SNS) TF-QKD [42] has been realized in the 428 km field experiment [58], the 511 km field experiment [59], and the 605 km laboratory experiment [60], which are the farthest field experiments and laboratory experiment to date.
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
One significant technique in TF QKD protocols is phase post-selection, which can reduce the phase-error or bit-error in the interference. In this paper, we propose a modified MDI-QKD protocol with phase post-selection to improve the key rate by reducing the estimated phase-error rate. The paper is arranged as follows. We first introduce the main idea of our modified protocol and prove its security. Then we show some numerical results to compare the modified protocol with other protocols. The paper is ended with concluding remarks.
2. PROTOCOL
Based on the decoy-state MDI-QKD protocol, we propose a modified protocol with phase post-selection. We assume Alice and Bob take the weak coherent state (WCS) sources to encode the quantum signals. The state of a WCS pulse with intensity
A. Main Idea
In the
For the received signal pulse pairs, Charlie is assumed to first compensate for the difference in public phases
As we shall show later, such a post-selection can produce a smaller observed phase-flip error rate for the single-photon pairs if
We shall post-select a subset of pulse pairs
B. Implementation Process of the Protocol
We take the four-intensity MDI-QKD protocol with phase post-selection to show the whole implementation process.
There are four WCS sources
To efficiently estimate the difference in public phases of the pulse pairs received in Charlie’s detectors, the method performed in the TF-QKD experiments can be applied here [52–57]. Alice (Bob) encodes the strong reference pulses multiplexed with the signal pulses by modulating a continuous light into pulsed light. The signal pulses are quantum signals with random phases and single photon level intensities, while the strong reference pulses are classical signals with fixed phases and usually more than dozens to hundreds of times stronger than intensity of the signal pulses. Based on the recorded interference results of the strong reference pulses, Charlie can accurately estimate the relative difference in public phases of the received signal pulse pairs.
After Alice and Bob repeat the above process for
3. SECURITY PROOF
Since only the private phases of the effective events of the
For virtual protocol, to each pulse pair of the
Doing the integration in Eq. (4), we find that the density operator can be decomposed in the following convex form:
Hence, we have Lemma 1. For a pulse pair from any post-selected subset
Obviously, even Alice and Bob know the values of
In the real protocol, Alice and Bob cannot know the values of each
The private phases of the pulse pairs from
4. KEY RATE FORMULA
The phase post-selection method can be combined with both the single-scanning method [29] and the double-scanning method [38] of the four-intensity MDI-QKD protocol. Here we take the phase post-selection method combined with the double-scanning method as an example to show the calculation method of the final key rate. The method can be easily generalized to the case of combining with the single-scanning method.
As discussed in Section 3, the phase post-selection does not affect the security; thus, the density matrix of the pulse pairs from source
According to the data in
With Eqs. (4)–(6), we can get the density matrix of the pulse pairs from set
As shown in Ref. [38], if
The upper bound of the expected value of the phase-flip error rate of the single-photon pairs from
As discussed in Section 3, we can use the observed value in set
Since both Eqs. (15) and (17) are the upper bounds of the expected value of the phase-flip error rate, we can always use the smaller one to be the estimated upper bound. This is to say, for each group
With the Chernoff bound, we can get the real value of the lower bound of the yield of the single-photon pulse pairs from source
Then we have
5. NUMERICAL SIMULATION
We shall show the advantage of phase post-selection through the numerical simulation results. Similar to prior art works, we take linear model for channel transmittance [21,62] for the provably observed values of
List of Experimental Parameters Used in Numerical Simulations
1.5% | 40.0% | 1.1 | 0.2 |
Here
In the global parameter optimization process, if we directly scan
The accelerated method can reduce the scanning parameters from two to one. To clearly show this, we denote
If
If
If
We denote
Figure 1.Comparison of the key rates with this work and the former methods under the symmetric channel. The line of Ref. [38] is the key rates of the double-scanning four-intensity MDI-QKD protocol, and the line of Ref. [29] is the key rates of the original four-intensity MDI-QKD protocol. The experiment parameters are listed in Table
Figure 2.Comparison of the key rates with this work and the former methods under the symmetric channels. The experiment parameters here are similar to those in Fig.
Except for the symmetric model, the method introduced in this work can be directly applied to the asymmetric channels by simply removing the constraints
Figure 3.Comparison of the key rates with this work and the former methods under the asymmetric channels. The experiment parameters are listed in Table
Figure 4.Comparison of the key rates with this work and the former methods under the asymmetric channels. The experiment parameters here are similar to those in Fig.
Figure 5.Bell measurement setup of Charlie [21]. Here we take the polarization-encoding as an example to show the simulation method and the results of the phase-encoding are the same. BS, 50:50 beam splitter; PBS, polarization beam splitter;
Compared with the former works of MDI-QKD, the method of this work can obviously improve the key rates. But if the infinite decoy-states and infinite-key are considered, both this work and former works can accurately estimate the phase-flip error rate and the counting rate of single-photons, and thus they have similar performances in cases that are limited by the PLOB bound [5,41].
6. CONCLUSION
Based on the technique of the single-photon interference, we propose a modified MDI-QKD protocol with phase post-selection. We prove the security of the announcement of the private phases of the pulse pairs from
APPENDIX A: CHERNOFF BOUND
The Chernoff bound can help us estimate the expected value from their observed values [
Besides, we can use the Chernoff bound to help us estimate their real values from their expected values. Similar to Eqs. (
APPENDIX B: THE SIMULATION METHOD OF OBSERVED VALUES IN SET Q
A typical detection set-up of Charlie is shown in Fig.
We first consider the case that the polarization of the pulse pair is in
After the BS and polarization beam splitter (PBS), the state becomes
The measurement operator that
With a similar method, we can conclude that the probabilities that
With a similar method, we can get the probabilities that the other polarization input states cause a wrong effective event and a correct effective event are also
References
[1] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, 175-179(1984).
[2] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).
[3] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 1, 165-171(2007).
[4] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).
[5] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, P. Wallden. Advances in quantum cryptography. Adv. Opt. Photon., 12, 1012-1236(2020).
[6] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301-1350(2009).
[7] W.-Y. Hwang. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett., 91, 057901(2003).
[8] X.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett., 94, 230503(2005).
[9] H.-K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).
[10] D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, J. E. Nordholt. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett., 98, 010503(2007).
[11] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, H. Weinfurter. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett., 98, 010504(2007).
[12] C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, J.-W. Pan. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett., 98, 010505(2007).
[13] A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M. Caloz, M. Perrenoud, G. Gras, F. Bussières, M.-J. Li, D. Nolan, A. Martin, H. Zbinden. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett., 121, 190502(2018).
[14] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, J.-W. Pan. Satellite-to-ground quantum key distribution. Nature, 549, 43-47(2017).
[15] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, A. Zeilinger. The SECOQC quantum key distribution network in Vienna. New J. Phys., 11, 075001(2009).
[16] T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan. Metropolitan all-pass and inter-city quantum communication network. Opt. Express, 18, 27217-27225(2010).
[17] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express, 19, 10387-10409(2011).
[18] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. Zhang, K. Chen, J. Yin, J.-G. Ren, Z. Chen, S.-L. Han, Q. Yu, K. Liang, F. Zhou, X. Yuan, M.-S. Zhao, T.-Y. Wang, X. Jiang, L. Zhang, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, C.-Y. Lu, R. Shu, J.-Y. Wang, L. Li, N.-L. Liu, F. Xu, X.-B. Wang, C.-Z. Peng, J.-W. Pan. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589, 214-219(2021).
[19] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics, 4, 686-689(2010).
[20] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun., 2, 349(2011).
[21] H.-K. Lo, M. Curty, B. Qi. Measurement-device-independent quantum key distribution. Phys. Rev. Lett., 108, 130503(2012).
[22] S. L. Braunstein, S. Pirandola. Side-channel-free quantum key distribution. Phys. Rev. Lett., 108, 130502(2012).
[23] K. Tamaki, H.-K. Lo, C.-H. F. Fung, B. Qi. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A, 85, 042307(2012).
[24] X.-B. Wang. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A, 87, 012320(2013).
[25] M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, H.-K. Lo. Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun., 5, 3732(2014).
[26] F. Xu, M. Curty, B. Qi, H.-K. Lo. Practical aspects of measurement-device-independent quantum key distribution. New J. Phys., 15, 113007(2013).
[27] F. Xu, H. Xu, H.-K. Lo. Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A, 89, 052333(2014).
[28] Z.-W. Yu, Y.-H. Zhou, X.-B. Wang. Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A, 91, 032318(2015).
[29] Y.-H. Zhou, Z.-W. Yu, X.-B. Wang. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A, 93, 042324(2016).
[30] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, J.-W. Pan. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett., 117, 190501(2016).
[31] Y. Cao, Y.-H. Li, K.-X. Yang, Y.-F. Jiang, S.-L. Li, X.-L. Hu, M. Abulizi, C.-L. Li, W. Zhang, Q.-C. Sun, W.-Y. Liu, X. Jiang, S.-K. Liao, J.-G. Ren, H. Li, L. You, Z. Wang, J. Yin, C.-Y. Lu, X.-B. Wang, Q. Zhang, C.-Z. Peng, J.-W. Pan. Long-distance free-space measurement-device-independent quantum key distribution. Phys. Rev. Lett., 125, 260503(2020).
[32] K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.-J. Zhang, H. Li, L. You, Z. Wang, X. Jiang, T.-Y. Chen, S.-K. Liao, C.-Z. Peng, F. Xu, J.-W. Pan. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X, 10, 031030(2020).
[33] H. Semenenko, P. Sibson, A. Hart, M. G. Thompson, J. G. Rarity, C. Erven. Chip-based measurement-device-independent quantum key distribution. Optica, 7, 238-242(2020).
[34] L. Cao, W. Luo, Y. Wang, J. Zou, R. D. Yan, H. Cai, Y. Zhang, X. L. Hu, C. Jiang, W. J. Fan, X. Q. Zhou, B. Dong, X. S. Luo, G. Q. Lo, Y. X. Wang, Z. W. Xu, S. H. Sun, X. B. Wang, Y. L. Hao, Y. F. Jin, D. L. Kwong, L. C. Kwek, A. Q. Liu. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Appl., 14, 011001(2020).
[35] L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. Penty, A. Shields. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics, 10, 312-315(2016).
[36] C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, Z.-F. Han. Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica, 4, 1016-1023(2017).
[37] G. Roberts, M. Lucamarini, Z. Yuan, J. Dynes, L. Comandar, A. Sharpe, A. Shields, M. Curty, I. Puthoor, E. Andersson. Experimental measurement-device-independent quantum digital signatures. Nat. Commun., 8, 1098(2017).
[38] C. Jiang, Z.-W. Yu, X.-L. Hu, X.-B. Wang. Higher key rate of measurement-device-independent quantum key distribution through joint data processing. Phys. Rev. A, 103, 012402(2021).
[39] Y.-P. Chen, J.-Y. Liu, M.-S. Sun, X.-X. Zhou, C.-H. Zhang, J. Li, Q. Wang. Experimental measurement-device-independent quantum key distribution with the double-scanning method. Opt. Lett., 46, 3729-3732(2021).
[40] M. Lucamarini, Z. L. Yuan, J. F. Dynes, A. J. Shields. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400-403(2018).
[41] S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi. Fundamental limits of repeaterless quantum communications. Nat. Commun., 8, 15043(2017).
[42] X.-B. Wang, Z.-W. Yu, X.-L. Hu. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A, 98, 062323(2018).
[43] K. Tamaki, H.-K. Lo, W. Wang, M. Lucamarini. Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound(2018).
[44] C. Cui, Z.-Q. Yin, R. Wang, W. Chen, S. Wang, G.-C. Guo, Z.-F. Han. Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl., 11, 034053(2019).
[45] M. Curty, K. Azuma, H.-K. Lo. Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Inf., 5, 64(2019).
[46] Z.-W. Yu, X.-L. Hu, C. Jiang, H. Xu, X.-B. Wang. Sending-or-not-sending twin-field quantum key distribution in practice. Sci. Rep., 9, 3080(2019).
[47] K. Maeda, T. Sasaki, M. Koashi. Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun., 10, 3140(2019).
[48] C. Jiang, Z.-W. Yu, X.-L. Hu, X.-B. Wang. Unconditional security of sending or not sending twin-field quantum key distribution with finite pulses. Phys. Rev. Appl., 12, 024061(2019).
[49] H. Xu, Z.-W. Yu, C. Jiang, X.-L. Hu, X.-B. Wang. Sending-or-not-sending twin-field quantum key distribution: breaking the direct transmission key rate. Phys. Rev. A, 101, 042330(2020).
[50] G. Currás-Lorenzo, Á. Navarrete, K. Azuma, G. Kato, M. Curty, M. Razavi. Tight finite-key security for twin-field quantum key distribution. npj Quantum Inf., 7, 22(2021).
[51] C. Jiang, X.-L. Hu, Z.-W. Yu, X.-B. Wang. Composable security for practical quantum key distribution with two way classical communication. New J. Phys., 23, 063038(2021).
[52] M. Minder, M. Pittaluga, G. Roberts, M. Lucamarini, J. Dynes, Z. Yuan, A. Shields. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics, 13, 334-338(2019).
[53] Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang, X.-L. Hu, H. Li, C. Jiang, J. Lin, T.-Y. Chen, L. You, Z. Wang, X.-B. Wang, Q. Zhang, J.-W. Pan. Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett., 123, 100505(2019).
[54] S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z. Zhou, G.-C. Guo, Z.-F. Han. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X, 9, 021046(2019).
[55] X. Zhong, J. Hu, M. Curty, L. Qian, H.-K. Lo. Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett., 123, 100506(2019).
[56] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X.-L. Hu, J.-Y. Guan, Z.-W. Yu, H. Xu, J. Lin, M.-J. Li, H. Chen, H. Li, L. You, Z. Wang, X.-B. Wang, Q. Zhang, J.-W. Pan. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett., 124, 070501(2020).
[57] X.-T. Fang, P. Zeng, H. Liu, M. Zou, W. Wu, Y.-L. Tang, Y.-J. Sheng, Y. Xiang, W. Zhang, H. Li, Z. Wang, L. You, M.-J. Li, H. Chen, Y.-A. Chen, Q. Zhang, C.-Z. Peng, X. Ma, T.-Y. Chen, J.-W. Pan. Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics, 14, 422-425(2020).
[58] H. Liu, C. Jiang, H.-T. Zhu, M. Zou, Z.-W. Yu, X.-L. Hu, H. Xu, S. Ma, Z. Han, J.-P. Chen, Y. Dai, S.-B. Tang, W. Zhang, H. Li, L. You, Z. Wang, Y. Hua, H. Hu, H. Zhang, F. Zhou, Q. Zhang, X.-B. Wang, T.-Y. Chen, J.-W. Pan. Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett., 126, 250502(2021).
[59] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W.-J. Zhang, Z.-Y. Han, S.-Z. Ma, X.-L. Hu, Y.-H. Li, H. Liu, F. Zhou, H.-F. Jiang, T.-Y. Chen, H. Li, L.-X. You, Z. Wang, X.-B. Wang, J.-W. Zhang, Q. Pan. Twin-field quantum key distribution over 511 km optical fiber linking two distant metropolitans. Nat. Photonics, 15, 570-575(2021).
[60] M. Pittaluga, M. Minder, M. Lucamarini, M. Sanzaro, R. I. Woodward, M.-J. Li, Z. Yuan, A. J. Shields. 600 km repeater-like quantum communications with dual-band stabilization. Nat. Photonics, 15, 530-535(2021).
[61] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat., 23, 493-507(1952).
[62] X.-L. Hu, Z.-W. Yu, X.-B. Wang. Efficient measurement-device-independent quantum key distribution without vacuum sources. Phys. Rev. A, 98, 032303(2018).
[63] Z. Yuan, A. Plews, R. Takahashi, K. Doi, W. Tam, A. W. Sharpe, A. R. Dixon, E. Lavelle, J. F. Dynes, A. Murakami, M. Kujiraoka, M. Lucamarini, Y. Tanizawa, H. Sato, A. J. Shields. 10-Mb/s quantum key distribution. J. Lightwave Technol., 36, 3427-3433(2018).

Set citation alerts for the article
Please enter your email address