
Measurement-device-independent quantum key
distribution protocol with phase post-selection
CONG JIANG,1,2 XIAO-LONG HU,3 ZONG-WEN YU,4 AND XIANG-BIN WANG1,2,5,6,7,*
1Jinan Institute of Quantum Technology, Jinan 250101, China
2State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
3School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
4Data Communication Science and Technology Research Institute, Beijing 100191, China
5Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,
University of Science and Technology of China, Shanghai 201315, China
6Shenzhen Institute for Quantum Science and Engineering, and Physics Department, Southern University of Science and Technology,
Shenzhen 518055, China
7Frontier Science Center for Quantum Information, Beijing, China
*Corresponding author: xbwang@mail.tsinghua.edu.cn

Received 11 October 2021; revised 6 February 2022; accepted 19 February 2022; posted 22 February 2022 (Doc. ID 445617);
published 30 June 2022

Measurement-device-independent quantum key distribution (MDI-QKD) protocol can remove all the loopholes
of the detection devices and, thus, has attracted much attention. Based on the technique of single-photon inter-
ference, we propose a modified MDI-QKD protocol with phase post-selection. We prove the security of the
announcement of the private phases in the X basis and show how to apply the phase post-selection method
to the double-scanning four-intensity MDI-QKD protocol. The numerical results show that the phase post-
selection method can significantly improve the key rates at all distances. In the double-scanning method,
two parameters need to be scanned in the calculation of the final key rate, and the global parameter optimiza-
tion is pretty time-consuming. We propose an accelerated method that can greatly reduce the running time
of the global parameter optimization program. This makes the method practically useful in an unstable
channel. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.445617

1. INTRODUCTION

Since the BB84 protocol was proposed in 1984 [1], quantum
key distribution (QKD) has been studied for so many years in
both theories and experiments [2–6]. The decoy-state BB84
protocol [7–9] was widely used in the experiments [10–14]
and QKD networks [15–17] in which the decoy-state method
can ensure the security of QKD with imperfect single-photon
sources. Recently, an integrated space-to-ground quantum
communication network over 4600 km was demonstrated
by applying the decoy-state BB84 protocol [18]. But, in prin-
ciple, the detectors in the BB84 protocol could be hacked by an
eavesdropper due to the imperfections of the detectors [19,20].
Although there are some defense strategies against known at-
tacks, we need a more robust method to protect the security
with imperfect detectors.

Based on the virtual entanglement swapping, measurement-
device-independent (MDI)-QKD protocol [21,22] can repair
all the detection side vulnerabilities. The three-intensity MDI-
QKD protocol [23–25] can ensure the security with both im-
perfect single-photon sources and detectors, but the key rate is

pretty low. Many improved schemes were proposed to increase
the key rate [26–29]. Among all those, the four-intensity MDI-
QKD protocol [29] can improve the key rate by several orders
of magnitude and becomes the mainstream of MDI-QKD pro-
tocol. The four-intensity MDI-QKD protocol has been applied
to the experiments of long-distance MDI-QKD [30], free-
space MDI-QKD [31], chip-based MDI-QKD [32–34], high-
speed MDI-QKD [35], and so on [36,37]. Based on the
four-intensity MDI-QKD protocol [29], we proposed a
double-scanning method [38], which can further improve
the key rate by up to 280% in typical experiment conditions.
The double-scanning method [38] with four-intensity MDI-
QKD protocol has been applied in a recent experiment [39].

Recently, based on single-photon interference, twin-field
(TF)-QKD [40] was proposed. The TF-QKD can raise the
key rate from the linear scale to square root scale of channel
transmittance and break the PLOB bound [41], the key rate
limit of repeaterless QKD. TF-QKD protocol and its variants
[42–45] have been widely studied in theories [46–51] and ex-
periments [52–57]. Specially, sending-or-not-sending (SNS)
TF-QKD [42] has been realized in the 428 km field experiment
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[58], the 511 km field experiment [59], and the 605 km labo-
ratory experiment [60], which are the farthest field experiments
and laboratory experiment to date.

One significant technique in TF QKD protocols is phase
post-selection, which can reduce the phase-error or bit-error
in the interference. In this paper, we propose a modified
MDI-QKD protocol with phase post-selection to improve
the key rate by reducing the estimated phase-error rate. The
paper is arranged as follows. We first introduce the main idea
of our modified protocol and prove its security. Then we show
some numerical results to compare the modified protocol with
other protocols. The paper is ended with concluding remarks.

2. PROTOCOL

Based on the decoy-state MDI-QKD protocol, we propose a
modified protocol with phase post-selection. We assume
Alice and Bob take the weak coherent state (WCS) sources
to encode the quantum signals. The state of a WCS pulse with
intensity μ and phase θ is denoted by

jeiθ ffiffiffi
μ

p i �
X∞
m�0

e−μ∕2eimθ
ffiffiffi
μ

p mffiffiffiffiffi
m!

p jmi, (1)

where jmi is the m-photon state.

A. Main Idea
In the jth time window, Alice (Bob) sends out a strong
reference pulse followed by a signal pulse in state
jei�θaj�γaj� ffiffiffiffiffi

μa
p i�jei�θbj�γbj� ffiffiffiffiffi

μb
p i� to the untrusted third-party

Charlie, where γaj and γbj represent the public phase related
to the strong reference pulse, and θaj and θbj represent the pri-
vate phase. The public phases are known to everyone, and the
private phases are randomly selected from �0,2π�. Some of the
private phases are announced in the data post-processing, and
the other private phases are never announced in the whole
protocol.

For the received signal pulse pairs, Charlie is assumed to first
compensate for the difference in public phases γaj − γbj and
then perform the Bell measurement. In this protocol, we will
make post-selection for a set Q of signal pulse pairs in X basis.
We make the post-selection according to the difference be-
tween the private phases of the pulse pair. The goal of this
post-selection is to make the observed error rate in subset Q
be small enough so as to make a better estimation for the
phase-flip error rate of single-photon pairs in Z basis. For this
goal, we need a small positive value λ in the following formula:

1 − j cos�θaj − θbj�j ≤ λ: (2)

As we shall show later, such a post-selection can produce a
smaller observed phase-flip error rate for the single-photon pairs
if λ is small. Before going further, we first show the idea in more
details by the example of the four-intensity protocol [29,38].

We shall post-select a subset of pulse pairs Q . By using re-
sults of all pulse pairs in X basis, we can evaluate the yield of the
single-photon pairs, which can be used to obtain the yield of all
single-photon pairs and also the yield of the single-photon pairs
in set Q only. Then, to calculate the final key rate, we have two
options. One is to ignore the subsetQ and just calculate the key
rate using the standard method of the four-intensity protocol.

The other is to use the observed error rate in subset Q , then
estimate the phase-flip error rate for single-photon pairs in Z
basis, and finally calculate the final key rate by this. We will
always choose the one that produces the higher key rate. A
small λ results in a small observed error rate in subset Q ,
but the number of observed error events will also be small,
which would cause large statistical fluctuations. Thus, there
is a trade-off between the observed error rate and the number
of observed error events, and we need to optimize λ to achieve
the best estimation of the phase-flip error rate.

B. Implementation Process of the Protocol
We take the four-intensity MDI-QKD protocol with phase
post-selection to show the whole implementation process.

There are four WCS sources o, x, y, z with different inten-
sities at Alice’s and Bob’s sides, respectively. In X basis, Alice
(Bob) uses WCS sources oA, xA, and yA (oB , xB , and yB) with
intensities μoA � 0, μxA , and μyA (μoB � 0, μxB , and μyB ), re-
spectively. In Z basis, Alice (Bob) uses WCS source zA (zB)
with intensity μzA (μzB ). In the jth time window, Alice (Bob)
randomly prepares a signal pulse in state jei�θaj�γaj� ffiffiffiffiffiffiffi

μαA
p i

�jei�θbj�γbj� ffiffiffiffiffiffiffi
μβB

p i� with probability pαA (pβB ) for α, β �
o, x, y, z, where θaj and θbj are randomly selected from
�0,2π�. The signal pulse is encoded in X basis if α, β � o, x, y
and in Z basis if α, β � z. Then Alice (Bob) sends out the pre-
pared signal pulse to Charlie. Charlie is assumed to first com-
pensate for the difference in public phases, and then perform
the Bell measurement to the received pulse pairs. Charlie an-
nounces the outcome to Alice and Bob. If two specific detectors
click (for example, two and only two detectors corresponding to
different polarizations click in the polarization coding scheme),
Alice and Bob take it as an effective event, and Alice and Bob
only keep the data of effective events.

To efficiently estimate the difference in public phases of the
pulse pairs received in Charlie’s detectors, the method per-
formed in the TF-QKD experiments can be applied here
[52–57]. Alice (Bob) encodes the strong reference pulses multi-
plexed with the signal pulses by modulating a continuous light
into pulsed light. The signal pulses are quantum signals with
random phases and single photon level intensities, while the
strong reference pulses are classical signals with fixed phases
and usually more than dozens to hundreds of times stronger
than intensity of the signal pulses. Based on the recorded in-
terference results of the strong reference pulses, Charlie can ac-
curately estimate the relative difference in public phases of the
received signal pulse pairs.

After Alice and Bob repeat the above process for N times
and Charlie announces all the outcomes, they (Alice and
Bob) acquire a series of data. Then, Alice and Bob first an-
nounce the intensity of the pulse corresponding to each effec-
tive event. For the effective events that both Alice and Bob take
the x sources, they then announce the private phases θaj and
θbj. The private phases of other effective events are never an-
nounced. We denote αβ as the pulse pair source if Alice takes
the α source and Bob takes the β source for α, β � o, x, y, z. We
use the following criteria for the effective events of the xx source
to make post-selection for the subset Q :

1 − j cos�θaj − θbj�j ≤ λ: (3)
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With all those data, we can calculate the final key rate R. The
calculation method is shown in Section 4.

3. SECURITY PROOF

Since only the private phases of the effective events of the xx
source are revealed in this protocol, we only need to consider
the security of those parts. For simplicity, we first consider the
following virtual protocol.

For virtual protocol, to each pulse pair of the xx source, only
Alice and Bob know the value δj � θaj − θbj, but they do not
know the phase values θaj, θbj, γaj, γbj. Here we choose the re-
gion −π < δj ≤ π in our discussion. Therefore, the density
operator of a signal pulse pair from any subset from whatever
post-selection strategies that satisfy Eq. (3) can be written as

ρ � 1

4π

Z
2π

0

dθaj�Ω�δi� � Ω�δi � π��, (4)

where we have used the notation

Ω�δi� �
���ei�θaj�γaj� ffiffiffiffiffiffiffi

μxA
p ihei�θaj�γaj� ffiffiffiffiffiffiffi

μxA
p ���

⊗
���ei�θaj�γbj−δi� ffiffiffiffiffiffiffi

μxB
p ihei�θaj�γbj−δi� ffiffiffiffiffiffiffi

μxB
p ���: (5)

Doing the integration in Eq. (4), we find that the density
operator can be decomposed in the following convex form:

ρ � c11j11ih11j � �1 − c11�ρ 0, (6)

where c11 � μaxμbxe−μax−μbx and 1 − c11 are positive values and
ρ 0 is a density operator, which is �ρ − c11j11ih11j�∕�−c11�.

Hence, we have Lemma 1. For a pulse pair from any post-
selected subsetQ , it can be regarded as the classical mixture of a
single-photon pair with probability c11 and another density
operator with probability 1 − c11.

Obviously, even Alice and Bob know the values of θaj and
θbj, but they never use the information of values of θaj and θbj;
a pulse pair from subset Q can still be regarded as the classical
mixture of a single-photon pair with probability c11 and an-
other density operator with probability 1 − c11. We define
Q11 as the set of single-photon pulse pairs from Q. Since in
the distribution process no one can tell the difference between
the pulse pairs fromQ11 and the ideal single-photon pulse pairs
in X basis, we have the following. (1) The yield of single-pho-
ton pulse pairs calculated from all effective events caused by
pulse pairs in X basis is asymptotically equal to the yield of
single-photon pulse pairs from set Q . (2) The bit-flip error rate
of the effective events of single-photon pulse pairs from Q is
asymptotically equal to the phase-flip error rate of all those ef-
fective events caused by single-photon pairs prepared in
Z basis.

In the real protocol, Alice and Bob cannot know the values
of each δj of the pulse pair from xx source before the private
phases are announced. But if they announce the private phases
through a secret channel that cannot be eavesdropped by any-
one else, the above discussion still holds. In the following, we
shall prove that the security of Alice and Bob’s announcing the
private phases through a private channel is equivalent to that of
announcing the private phases through a public channel.

The private phases of the pulse pairs from Z basis are never
announced; thus, those pulse pairs are the classical mixture of

Fock states. To calculate the final key rate, we need to know the
lower bound of the number of the effective events caused by
single-photon pairs from Z basis n11 and the upper bound of
its corresponding phase-flip error rate eph. Note the values of
n11 and eph are objective facts, which do not change by any
outside information when the quantum distribution process
of the protocol is done and Charlie has announced all detection
outcomes. This is to say, after Alice and Bob know this fact,
they can announce the private phases of all pulse pairs from
xx source, and this does not affect the security of the protocol.
We suppose Alice and Bob get the values of n11 and eph through
a secret channel, and get the lower bound of the number of the
effective events caused by single photon pairs from Z basis n11 0

and the upper bound of its corresponding phase-flip error rate
eph 0 through a public channel. Since all observed values are the
same in the case of secret channel and public channel, we have
n11 � n11 0 and eph � eph 0. This ends the proof.

4. KEY RATE FORMULA

The phase post-selection method can be combined with both
the single-scanning method [29] and the double-scanning
method [38] of the four-intensity MDI-QKD protocol.
Here we take the phase post-selection method combined with
the double-scanning method as an example to show the calcu-
lation method of the final key rate. The method can be easily
generalized to the case of combining with the single-scanning
method.

As discussed in Section 3, the phase post-selection does not
affect the security; thus, the density matrix of the pulse pairs
from source xx can still be regarded as the classical mixture of
Fock states. We denote the density matrix of source
αβ � oo, ox, xo, oy, yo, xy, yx, xx, yy, zz by

ραβ �
X∞
m�0

X∞
n�0

aαmb
β
njmnihmnj, (7)

where

aαm � μmαA e
−μαA

m!
, bβn �

μnβB e
−μβB

n!
, (8)

and we denote the total number of instances of source
αβ � oo, ox, xo, oy, yo, xy, yx, xx, yy, zz by N αβ with

N αβ � pαApβBN : (9)

According to the data in X basis, Alice and Bob get the ob-
served value of the number of effective events of source αβ, nαβ.
We denote the expected value of nαβ by hnαβi. With Chernoff
bound [61], we can estimate the expected value according to
the observed value. We denote the estimated lower and upper
bounds of the expected value by the superscripts L and U , re-
spectively. Besides, we denote the number of wrong effective
events of source xx as mxx whose corresponding expected value
is hmxxi.

With Eqs. (4)–(6), we can get the density matrix of the pulse
pairs from set Q ,

ρQ � c11j11ih11j � �1 − c11�ρ 0, (10)

where c11 � μaxμbxe−μax−μbx � ax1b
x
1 and 1 − c11 are positive val-

ues and ρ 0 is a density operator, which is �ρ − c11j11ih11j�∕
�1−c11�. The criteria of the correct effective event and the
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wrong effective event of the pulse pair in the set Q are the same
as those of the source xx. We denote the observed number of
wrong effective events in set Q by mQ and its corresponding
expected value by hmQi.

As shown in Ref. [38], if
μyB
μxB

≤ μyA
μxA

, the lower bound of the

expected value of the yield of the single-photon pulse pairs is

hs11iL �
hS�iL � ay1b

y
2

Nxx
M − hS−iU − ay1b

y
2H

ax1a
y
1�bx1by2 − bx2by1�

, (11)

where

hS�i �
ay1b

y
2

Nxx
hm̄xxi �

ax1b
x
2a

y
0

Noy
hnoyi �

ax1b
x
2b

y
0

N yo
hnyoi, (12)

hS−i �
ax1b

x
2

Nyy
hnyyi �

ax1b
x
2a

y
0b

y
0

Noo
hnooi, (13)

H � ax0
Nox

hnoxi �
bx0
Nxo

hnxoi −
ax0b

x
0

Noo
hnooi, (14)

hm̄xxi � hnxxi − hmxxi, and M � hmxxi. Applying the joint
constraint method [28,38], we can get the lower bound of
hS�i, hS�iL, the upper bound of hS−i, hS−iU , and the lower
and upper bounds of H, HL, and HU . Applying the Chernoff
bound, we can get the lower and upper bounds ofM,ML, and
MU . For the case

μyB
μxB

>
μyA
μxA

, we can get similar formulas.

The upper bound of the expected value of the phase-flip
error rate of the single-photon pairs from Z basis is

he11iU � M∕Nxx −H∕2
ax1b

x
1hs11iL

: (15)

As discussed in Section 3, we can use the observed value in
set Q to get he11iU . Let Δ ∈ �0, π� satisfy

cos
Δ
2
� 1 − λ, (16)

where λ is defined in Eq. (2). With Eq. (10), it is easy to check
that

he11i0U �
hmQ i

Δ∕πNxx

ax1b
x
1hs11iL

: (17)

Since both Eqs. (15) and (17) are the upper bounds of the
expected value of the phase-flip error rate, we can always use the
smaller one to be the estimated upper bound. This is to say, for
each group �H,M�, we apply Eq. (11) to calculate hs11iL, and
we have

heph11iU � min

�
M∕Nxx −H∕2

ax1b
x
1hs11iL

,
hmQ i

Δ∕πNxx

ax1b
x
1hs11iL

�
: (18)

With the Chernoff bound, we can get the real value of the
lower bound of the yield of the single-photon pulse pairs from
source zz, sL11,Z , and its corresponding upper bound of the
phase-flip error rate, eph,U11 ,

sL11,Z � OL�Nzzaz1b
z
1hs11iL�

Nzzaz1b
z
1

, (19)

eph,U11 � OU �Nzzaz1b
z
1s
L
11,Z heph11iU �

Nzzaz1b
z
1s
L
11,Z

, (20)

where OU �Y � and OL�Y � are defined in Eqs. (A5) and (A6).

Then we have

R�H,M� � pzApzB faz1bz1sL11,Z �1 − h�e
ph,U
11 �� − f Szzh�Ezz�g

−
1

N

�
log2

8

εcor
� 2log2

2

ε 0ε̂
� 2log2

1

2εPA

�
,

(21)

where Szz � nzz∕Nzz is the yield of the pulse pairs from source
zz; Ezz is the bit-flip error rate of the effective event in source
zz; h�x� � −xlog2�x� − �1 − x�log2�1 − x� is the Shannon en-
tropy; εcor is the failure probability of error correction; εPA is
the failure probability of privacy amplification; and ε 0 and ε̂ are
the coefficients while using the chain rules of smooth min- and
max-entropy. Finally, by scanning �H,M�, we can get the final
key rate,

R � min
H∈�HL ,HU �,
M∈�ML ,MU �

R�H,M�: (22)

5. NUMERICAL SIMULATION

We shall show the advantage of phase post-selection through
the numerical simulation results. Similar to prior art works,
we take linear model for channel transmittance [21,62] for
the provably observed values of nαβ and mαβ in our simulation.
The simulation method of mQ is shown in Appendix B. The
experiment parameters are listed in Table 1. In the optimiza-
tion of the phase post-selection combined with the double-
scanning method, except for the source parameters, λ is also
a parameter to be optimized.

In the global parameter optimization process, if we directly
scan �H,M� in their range to calculate the key rate, it would be
pretty time-consuming. We propose an accelerated method
that can reduce the running time of the optimized program
from several days to less than half an hour.

The accelerated method can reduce the scanning parameters
from two to one. To clearly show this, we denote TQ � hmQ i

Δ∕πNxx
,

T L � ML∕Nxx −HU∕2, TU � MU∕Nxx −HL∕2, and
t11 � M∕Nxx −H∕2.

If TQ ≤ T L, then no matter what values �H,M� take, the
worst case of the key rate must be achieved when H � HU ,
M � ML.

If TQ > TL, then for each certain t11 ∈ �T L,TU 0�, where
TU 0 � min�TQ ,TU �, the worst case of the key rate is
achieved when hs11iL is the smallest. With the simplest linear
programming method, we can easily know that when
H � H �t11�, hs11iL is the smallest, and

Table 1. List of Experimental Parameters Used in
Numerical Simulationsa

pd ed ηd f αf ξ N

1.0 × 10−7 1.5% 40.0% 1.1 0.2 1.0 × 10−10 1.0 × 1010

aHere pd is the dark counting rate per pulse of Charlie’s detectors; ed is the
misalignment-error probability; ηd is the detection efficiency of Charlie’s
detectors; f is the error correction inefficiency; αf is the fiber loss coefficient
(dB/km); ξ is the failure probability while using Chernoff bound; N is the
number of total pulse pairs sent out in the protocol.
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H �t11� �
�
HU , t11 �HU∕2 ≤ MU∕Nxx ,
2�MU∕Nxx − t11�, t11 �HU∕2 > MU∕Nxx .

(23)

Then for each certain t11 ∈ �T L,TU 0�, we have

hs11iL �
hS�iL � ay1b

y
2�t11 −H �t11�∕2� − hS−iU

ax1a
y
1�bx1by2 − bx2by1�

, (24)

heph11iU � t11
ax1b

x
1hs11iL

: (25)

When we substitute hs11iL and heph11iU into Eqs. (19)–(21), we
can get R�t11�. Finally, by scanning t11 in �T L,TU 0�, we can get
the final key rate, which is

R � min
t11∈�T L ,TU 0 �

R�t11�: (26)

If TQ ≥ TU , the above method is obviously correct. But for
the case T L < TQ < TU , we need to prove that the worst case
of the key rate cannot be achieved in the range �TQ ,TU �.

We denote TQ ≤ tw11 < tv11 ≤ TU . It is easy to check
H �tw11� ≥ H �tv11�; thus, we have hs11iL�tw11� < hs11iL�tv11�.
With Eq. (18), we have

heph11iU �tw11� �
TQ

ax1b
x
1hs11iL�tw11�

> heph11iU �tv11�

� TQ

ax1b
x
1hs11iL�tv11�

: (27)

Thus, we have R�tw11� < R�tv11�, which means the worst case of
the key rate cannot be achieved in the range �TQ ,TU �. This
ends the proof.

Figures 1 and 2 are the comparison of the key rates with this
work and the former methods [29,38] under the symmetric
channel. The symmetric channel means the distance between
Alice and Charlie LAC is the same as that distance between Bob
and Charlie LBC . We also assume the source parameters of Alice
and Bob are the same, which means pαA � pαB and μαA � μαB .

The line of Ref. [38] is the key rates of the double-scanning
four-intensity MDI-QKD protocol, and the line of Ref. [29]
is the key rates of the original four-intensity MDI-QKD pro-
tocol. In Fig. 1, the experiment parameters are listed in Table 1.
The numerical results show that the method of this work can
significantly improve the key rate at all distances. Key rates in
Table 2 show that the method of this work can improve the key
rate by 35%–140% comparing with the results of the
double-scanning four-intensity MDI-QKD protocol, which
is the MDI-QKD protocol with the highest key rate so far.
Considering a more practical case where a GHz system works
only a second and then performs the data post-processing to
extract fresh final keys, there are 109 total pulses sent out.
Thus, in Fig. 2, we set N� 109 and the misalignment-error
probability ed � 0.005, and the other experiment parameters
are listed in Table 1. Figure 2 shows that, with a smaller block
size and misalignment-error probability, the key rates can be
obviously improved even in the short distance. At the short
distance such as 5 km, there are about 1.2 × 107 raw keys
to perform error correction process. At a long distance such
as 60 km, there are about 2 × 105 raw keys to perform error
correction process. Considering that the bit-error rate of these
raw keys is about 1%, the low density parity check code
(LDPC) error correction algorithm can achieve good error cor-
rection inefficiency. While the high-speed field-programmable
gate array (FPGA) is adopted to perform the LDPC error cor-
rection algorithm, the error correction speed can reach 55 Mb/s
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Fig. 1. Comparison of the key rates with this work and the former
methods under the symmetric channel. The line of Ref. [38] is the key
rates of the double-scanning four-intensity MDI-QKD protocol, and
the line of Ref. [29] is the key rates of the original four-intensity MDI-
QKD protocol. The experiment parameters are listed in Table 1.
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Fig. 2. Comparison of the key rates with this work and the former
methods under the symmetric channels. The experiment parameters
here are similar to those in Fig. 1 except that we set N� 109 and the
misalignment-error probability ed � 0.005.

Table 2. Key Rates of Some Points in Fig. 1

Methods 30 km 60 km 90 km 100 km

This work 2.24 × 10−4 2.33 × 10−5 1.28 × 10−6 3.13 × 10−7
Ref. [38] 1.64 × 10−4 1.55 × 10−5 7.01 × 10−7 1.29 × 10−7
Ref. [29] 1.33 × 10−4 9.99 × 10−6 2.17 × 10−7 0

Research Article Vol. 10, No. 7 / July 2022 / Photonics Research 1707



[63]. In such cases, the error correction can be completed in less
than 1 s.

Except for the symmetric model, the method introduced in
this work can be directly applied to the asymmetric channels by
simply removing the constraints pαA � pαB and μαA � μαB .
Figures 3 and 4 are the comparison of the key rates with this
work and the former methods [29,38] under the asymmetric
channels. In the metro QKD network, the distance of QKD is
usually less than 50 km, and the maximum possible asymmetry
is about 20 km. Thus, we set LAC − LBC � 20 km. The other
experiment parameters of Fig. 3 are the same as those of Fig. 1,
and the other experiment parameters of Fig. 4 are the same as
those of Fig. 2. The results show that the method of this work

can obviously improve the key rates under the asymmetric
channels.

Compared with the former works of MDI-QKD, the
method of this work can obviously improve the key rates.
But if the infinite decoy-states and infinite-key are considered,
both this work and former works can accurately estimate the
phase-flip error rate and the counting rate of single-photons,
and thus they have similar performances in cases that are lim-
ited by the PLOB bound [5,41].

6. CONCLUSION

Based on the technique of the single-photon interference, we
propose a modified MDI-QKD protocol with phase post-selec-
tion. We prove the security of the announcement of the private
phases of the pulse pairs from xx source. We also show how to
apply the phase post-selection method to the double-scanning
four-intensity MDI-QKD protocol. The numerical results
show that the phase post-selection method can significantly im-
prove the key rate at all distances. In principle, our method can
be directly applied to free-space MDI-QKD. But due to the
atmospheric turbulence or moving sites (such as the satellite),
the channel is always unstable and changes rapidly, and how to
efficiently apply our method to free space will be further stud-
ied in future works.

APPENDIX A: CHERNOFF BOUND

The Chernoff bound can help us estimate the expected value
from their observed values [61]. Let X 1,X 2,…,X n be n ran-
dom samples, detected with the value 1 or 0, and let X denote
their sum satisfying X � Pn

i�1 X i. E is the expected value of
X . We have

EL�X � � X
1� δ1�X �

, (A1)

EU �X � � X
1 − δ2�X �

, (A2)

where we can obtain the values of δ1�X � and δ2�X � by solving
the following equations:�

eδ1

�1� δ1�1�δ1

� X
1�δ1 � ξ, (A3)

�
e−δ2

�1 − δ2�1−δ2
� X

1−δ2 � ξ, (A4)

where ξ is the failure probability.
Besides, we can use the Chernoff bound to help us estimate

their real values from their expected values. Similar to
Eqs. (A1)–(A4), the observed value, O, and its expected value,
Y , satisfy

OU �Y � � �1� δ 01�Y ��Y , (A5)

OL�Y � � �1 − δ 02�Y ��Y , (A6)

where we can obtain the values of δ 01�Y , ξ� and δ 02�Y , ξ� by
solving the following equations:

20 30 40 50 60 70 80 90 100 110
L (km)

10-8

10-7

10-6

10-5

10-4

R
 (

pe
r 

pu
ls

e)

This work
Ref. [38]
Ref. [29]

Fig. 3. Comparison of the key rates with this work and the former
methods under the asymmetric channels. The experiment parameters
are listed in Table 1, and we set LAC − LBC � 20 km.
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Fig. 4. Comparison of the key rates with this work and the former
methods under the asymmetric channels. The experiment parameters
here are similar to those in Fig. 3 except that we set N� 109 and the
misalignment-error probability ed � 0.005.
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�
eδ 01

�1� δ 01�1�δ 01

�Y
� ξ, (A7)

�
e−δ 02

�1 − δ 02�1−δ
0
2

�Y
� ξ: (A8)

APPENDIX B: THE SIMULATION METHOD OF
OBSERVED VALUES IN SET Q

A typical detection set-up of Charlie is shown in Fig. 5. In our
numerical simulation, the channel is assumed to be a linear
channel and the efficiency of detectors is regarded to be part
of the channel; thus, we can take the real detector as a
100% detection efficiency detector with dark counting rate
pd . For the time window that Alice and Bob use the
source xx, they shall send out a pulse pair in state
jei�θaj�γaj� ffiffiffiffiffiffiffi

μxA
p i ⊗ jei�θbj�γbj� ffiffiffiffiffiffiffi

μxB
p i. Since Charlie is assumed

to compensate for the difference in public phases, γaj and
γbj do not affect the measurement results. To simplify the sym-
bols, we omit the subscript j of private phases and keep in mind
that θa and θb are different in different time windows. Before
entering the beam splitter (BS) of the Bell measurement setup
of Charlie, the pulse pair is in state

jψ1i � jeiθa ffiffiffiffiffi
μa

p i ⊗ jeiθb ffiffiffiffiffi
μb

p i, (B1)

where μa � μxAηdηa, μb � μxBηdηb, and ηa and ηb are the
transmittance of the channel from Alice to Charlie and from
Bob to Charlie, respectively.

We first consider the case that the polarization of the pulse
pair is in��, where� represents the 45° polarization, and we
have

jψ1i � e−μa∕2−μb∕2e
ffiffiffiffi
μa

p
eiθa a†�

ffiffiffiffi
μb

p
eiθb b†�j00i: (B2)

After the BS and polarization beam splitter (PBS), the state
becomes

jψ2i � e−μa∕2−μb∕2e
	 ffiffiffi

μa
p
2 eiθa�

ffiffiffi
μb

p
2 eiθb



�a†H�a†V �

× e
	 ffiffiffi

μa
p
2 eiθa −

ffiffiffi
μb

p
2 eiθb



�b†H�b†V �j00i, (B3)

where H and V are the horizontal and vertical polarization,
respectively.

The measurement operator that D1H and D1V click is

M̂ � �I aH − �1 − pd �j0aH ih0aH j� ⊗ �I aV − �1 − pd �j0aV ih0aV j�
⊗ �1 − pd �j0bH ih0bH j ⊗ �1 − pd �j0bV ih0bV j: (B4)

Thus, the probability that D1H and D1V click is

p1H;1V � tr�M̂ jψ2ihψ2j�
� e−μa−μb

h
e
μa
4�

μb
4�

ffiffiffiffiffiffi
μaμb

p
2 cos δ − �1 − pd �

i
2�1 − pd �2,

(B5)

where δ � θa − θb.
With a similar method, we can conclude that the probabil-

ities thatD1H ,D2V click,D2H ,D1V click, andD2H ,D2V click:

p1H;2V � p2H;1V

� e−μa−μb
h
e
μa
4�

μb
4�

ffiffiffiffiffiffi
μaμb

p
2 cos δ − �1 − pd �

i

×
h
e
μa
4�

μb
4 −

ffiffiffiffiffiffi
μaμb

p
2 cos δ − �1 − pd �

i
�1 − pd �2, (B6)

p2H;2V � e−μa−μb
h
e
μa
4�

μb
4 −

ffiffiffiffiffiffi
μaμb

p
2 cos δ − �1 − pd �

i
2�1 − pd �2: (B7)

According to the criteria for correct and wrong effective events
in X basis, the probabilities that the input state jψ1i causes a
wrong effective event and a correct effective event, PW and PR ,
are

PW � p1H;2V � p2H;1V , PR � p1H;1V � p2H;2V : (B8)

With a similar method, we can get the probabilities that the
other polarization input states cause a wrong effective event and
a correct effective event are also PW and PR . Finally we have

mQ � 1

2π
NpxApxB

�Z Δ
2

−Δ2

PW dδ�
Z

π�Δ
2

π−Δ2

PW dδ

�
, (B9)

nQ � 1

2π
NpxApxB

�Z Δ
2

−Δ2

PRdδ�
Z

π�Δ
2

π−Δ2

PRdδ

�
� mQ ,

(B10)

where nQ is the total number of the effective events in set Q .
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Fig. 5. Bell measurement setup of Charlie [21]. Here we take the
polarization-encoding as an example to show the simulation method
and the results of the phase-encoding are the same. BS, 50:50 beam
splitter; PBS, polarization beam splitter; D1H ,D1V ,D2H ,D2V , single-
photon detectors.
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