• Photonics Research
  • Vol. 11, Issue 8, 1449 (2023)
Yuehan Xu1, Tao Wang1、2、3、4、*, Huanxi Zhao1, Peng Huang1、2、3, and Guihua Zeng1、2、3、5、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Center of Quantum Sensing and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3Hefei National Laboratory, CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
  • 4e-mail: tonystar@sjtu.edu.cn
  • 5e-mail: ghzeng@sjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.492448 Cite this Article Set citation alerts
    Yuehan Xu, Tao Wang, Huanxi Zhao, Peng Huang, Guihua Zeng. Round-trip multi-band quantum access network[J]. Photonics Research, 2023, 11(8): 1449 Copy Citation Text show less
    References

    [1] S. Khatri. Towards a general framework for practical quantum network protocols(2021).

    [2] H. J. Kimble. The quantum internet. Nature, 453, 1023-1030(2008).

    [3] M. Dianati, R. Alléaume, M. Gagnaire, X. Shen. Architecture and protocols of the future European quantum key distribution network. Security Commun. Netw., 1, 57-74(2008).

    [4] D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, H. Zbinden. Long-term performance of the Swiss quantum quantum key distribution network in a field environment. New J. Phys., 13, 123001(2011).

    [5] S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, Z.-F. Han. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express, 22, 21739-21756(2014).

    [6] R. Bedington, J. M. Arrazola, A. Ling. Progress in satellite quantum key distribution. npj Quantum Inf., 3, 30(2017).

    [7] A. Tajima, T. Kondoh, T. Ochi, M. Fujiwara, K. Yoshino, H. Iizuka, T. Sakamoto, A. Tomita, E. Shimamura, S. Asami, M. Sasaki. Quantum key distribution network for multiple applications. Quantum Sci. Technol., 2, 034003(2017).

    [8] E. O. Kiktenko, N. O. Pozhar, A. V. Duplinskiy, A. A. Kanapin, A. S. Sokolov, S. S. Vorobey, A. V. Miller, V. E. Ustimchik, M. N. Anufriev, A. Trushechkin, R. R. Yunusov, V. L. Kurochkin, Y. V. Kurochkin, A. K. Fedorov. Demonstration of a quantum key distribution network in urban fibre-optic communication lines. Quantum Electron., 47, 798(2017).

    [9] Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, J.-W. Pan. Large scale quantum key distribution: challenges and solutions. Opt. Express, 26, 24260-24273(2018).

    [10] E. Fitzke, L. Bialowons, T. Dolejsky, M. Tippmann, O. Nikiforov, T. Walther, F. Wissel, M. Gunkel. Scalable network for simultaneous pairwise quantum key distribution via entanglement-based time-bin coding. PRX Quantum, 3, 020341(2022).

    [11] S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, R. Ursin. An entanglement-based wavelength-multiplexed quantum communication network. Nature, 564, 225-228(2018).

    [12] Z. Qi, Y. Li, Y. Huang, J. Feng, Y. Zheng, X. Chen. A 15-user quantum secure direct communication network. Light Sci. Appl., 10, 183(2021).

    [13] C. Simon. Towards a global quantum network. Nat. Photonics, 11, 678-680(2017).

    [14] P. Komar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, M. D. Lukin. A quantum network of clocks. Nat. Phys., 10, 582-587(2014).

    [15] D. Gottesman, T. Jennewein, S. Croke. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett., 109, 070503(2012).

    [16] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger. Experimental quantum teleportation. Nature, 390, 575-579(1997).

    [17] D. Rideout, T. Jennewein, G. Amelino-Camelia, T. F. Demarie, B. L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R. B. Mann, E. Martin-Martinez, N. C. Menicucci, J. Moffat, C. Simon, R. Sorkin, L. Smolin, D. R. Terno. Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities. Classical Quantum Gravity, 29, 224011(2012).

    [18] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, P. Wallden. Advances in quantum cryptography. Adv. Opt. Photon., 12, 1012-1236(2020).

    [19] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [20] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. arXiv(2020).

    [21] R. Polkinghorne, T. Ralph. Continuous variable entanglement swapping. Phys. Rev. Lett., 83, 2095(1999).

    [22] T. C. Ralph. Security of continuous-variable quantum cryptography. Phys. Rev. A, 62, 062306(2000).

    [23] F. Grosshans, P. Grangier. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett., 88, 057902(2002).

    [24] F. Grosshans, P. Grangier. Reverse reconciliation protocols for quantum cryptography with continuous variables. arXiv(2002).

    [25] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier. Quantum key distribution using gaussian-modulated coherent states. Nature, 421, 238-241(2003).

    [26] C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, P. K. Lam. Quantum cryptography without switching. Phys. Rev. Lett., 93, 170504(2004).

    [27] F. Grosshans, N. J. Cerf. Continuous-variable quantum cryptography is secure against non-Gaussian attacks. Phys. Rev. Lett., 92, 047905(2004).

    [28] M. Navascués, F. Grosshans, A. Acin. Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett., 97, 190502(2006).

    [29] R. Garca-Patrón, N. J. Cerf. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett., 97, 190503(2006).

    [30] J. Lodewyck, P. Grangier. Tight bound on the coherent-state quantum key distribution with heterodyne detection. Phys. Rev. A, 76, 022332(2007).

    [31] J. Sudjana, L. Magnin, R. Garca-Patrón, N. J. Cerf. Tight bounds on the eavesdropping of a continuous-variable quantum cryptographic protocol with no basis switching. Phys. Rev. A, 76, 052301(2007).

    [32] R. Renner, J. I. Cirac. de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett., 102, 110504(2009).

    [33] M. Christandl, R. König, R. Renner. Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett., 102, 020504(2009).

    [34] A. Leverrier, P. Grangier. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett., 102, 180504(2009).

    [35] Y.-B. Zhao, M. Heid, J. Rigas, N. Lütkenhaus. Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks. Phys. Rev. A, 79, 012307(2009).

    [36] A. Leverrier, P. Grangier. Simple proof that gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A, 81, 062314(2010).

    [37] A. Leverrier, F. Grosshans, P. Grangier. Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A, 81, 062343(2010).

    [38] A. Leverrier, P. Grangier. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A, 83, 042312(2011).

    [39] A. Leverrier, R. Garca-Patrón, R. Renner, N. J. Cerf. Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett., 110, 030502(2013).

    [40] A. Leverrier. Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett., 118, 200501(2017).

    [41] K. Brádler, C. Weedbrook. Security proof of continuous-variable quantum key distribution using three coherent states. Phys. Rev. A, 97, 022310(2018).

    [42] S. Ghorai, P. Grangier, E. Diamanti, A. Leverrier. Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X, 9, 021059(2019).

    [43] . OIDA Quantum Photonics Roadmap(2020).

    [44] A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, P. K. Lam. No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett., 95, 180503(2005).

    [45] B. Qi, L.-L. Huang, L. Qian, H.-K. Lo. Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A, 76, 052323(2007).

    [46] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics, 7, 378-381(2013).

    [47] B. Qi, P. Lougovski, R. Pooser, W. Grice, M. Bobrek. Generating the local oscillator ‘locally’ in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X, 5, 041009(2015).

    [48] D. B. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, M. Sarovar. Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X, 5, 041010(2015).

    [49] Z. Qu, I. B. Djordjevic, M. A. Neifeld. RF-subcarrier-assisted four-state continuous-variable QKD based on coherent detection. Opt. Lett., 41, 5507-5510(2016).

    [50] D. Huang, P. Huang, D. Lin, G. Zeng. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep., 6, 19201(2016).

    [51] D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, G. Zeng. Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett., 41, 3511-3514(2016).

    [52] S. Kleis, M. Rueckmann, C. G. Schaeffer. Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals. Opt. Lett., 42, 1588-1591(2017).

    [53] F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C.-H. F. Fung, F. Karinou, A. Poppe, M. Peev, H. Hübel. Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator. Quantum, 3, 193(2019).

    [54] G. Zhang, J. Y. Haw, H. Cai, F. Xu, S. Assad, J. F. Fitzsimons, X. Zhou, Y. Zhang, S. Yu, J. Wu, W. Ser, L. C. Kwek, A. Q. Liu. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics, 13, 839-842(2019).

    [55] Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. Meng, W. Cai, Z. Wang, G. Wang, S. Yu, H. Guo. Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol., 4, 035006(2019).

    [56] Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, H. Guo. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett., 125, 010502(2020).

    [57] H. Wang, Y. Pi, W. Huang, Y. Li, Y. Shao, J. Yang, J. Liu, C. Zhang, Y. Zhang, B. Xu. High-speed Gaussian-modulated continuous-variable quantum key distribution with a local oscillator based on pilot-tone-assisted phase compensation. Opt. Express, 28, 32882-32893(2020).

    [58] S. Ren, S. Yang, A. Wonfor, I. White, R. Penty. Demonstration of high-speed and low-complexity continuous variable quantum key distribution system with local local oscillator. Sci. Rep., 11, 9454(2021).

    [59] W.-B. Liu, C.-L. Li, Y.-M. Xie, C.-X. Weng, J. Gu, X.-Y. Cao, Y.-S. Lu, B.-H. Li, H.-L. Yin, Z.-B. Chen. Homodyne detection quadrature phase shift keying continuous-variable quantum key distribution with high excess noise tolerance. PRX Quantum, 2, 040334(2021).

    [60] G.-J. Fan-Yuan, F.-Y. Lu, S. Wang, Z.-Q. Yin, D.-Y. He, Z. Zhou, J. Teng, W. Chen, G.-C. Guo, Z.-F. Han. Measurement-device-independent quantum key distribution for nonstandalone networks. Photon. Res., 9, 1881-1891(2021).

    [61] F.-Y. Lu, X. Lin, S. Wang, G.-J. Fan-Yuan, P. Ye, R. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, G.-C. Guo, Z.-F. Han. Intensity modulator for secure, stable, and high-performance decoy-state quantum key distribution. npj Quantum Inf., 7, 75(2021).

    [62] S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, R.-Q. Wang, P. Ye, Y. Zhou, G.-J. Fan-Yuan, F.-X. Wang, W. Chen, Y.-G. Zhu, P. V. Morozov, A. V. Divochiy, Z. Zhou, G.-C. Guo, Z.-F. Han. Twin-field quantum key distribution over 830-km fibre. Nat. Photonics, 16, 154-161(2022).

    [63] G.-J. Fan-Yuan, F.-Y. Lu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, Z. Zhou, Z.-H. Wang, J. Teng, G.-C. Guo, Z.-F. Han. Robust and adaptable quantum key distribution network without trusted nodes. Optica, 9, 812-823(2022).

    [64] F.-Y. Lu, P. Ye, Z.-H. Wang, S. Wang, Z.-Q. Yin, R. Wang, X.-J. Huang, W. Chen, D.-Y. He, G.-J. Fan-Yuan, G.-C. Guo, Z.-F. Han. Hacking measurement-device-independent quantum key distribution. Optica, 10, 520-527(2023).

    [65] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. Zhang, K. Chen, J. Yin, J.-G. Ren, Z. Chen, S.-L. Han, Q. Yu, K. Liang, F. Zhou, X. Yuan, M.-S. Zhao, T.-Y. Wang, X. Jiang, L. Zhang, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, C.-Y. Lu, R. Shu, J.-Y. Wang, L. Li, N.-L. Liu, F. Xu, X.-B. Wang, C.-Z. Peng, J.-W. Pan. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589, 214-219(2021).

    [66] J. Dynes, A. Wonfor, W.-S. Tam, A. Sharpe, R. Takahashi, M. Lucamarini, A. Plews, Z. Yuan, A. Dixon, J. Cho, Y. Tanizawa, J.-P. Elbers, H. Greißer, I. H. White, R. V. Penty, A. J. Shields. Cambridge quantum network. npj Quantum Inf., 5, 101(2019).

    [67] A. Wonfor, C. White, A. Lord, R. Nejabati, T. P. Spiller, J. F. Dynes, A. J. Shields, R. V. Penty. Quantum networks in the UK. Proc. SPIE, 11712, 1171207(2021).

    [68] T.-Y. Chen, X. Jiang, S.-B. Tang, L. Zhou, X. Yuan, H. Zhou, J. Wang, Y. Liu, L.-K. Chen, W.-Y. Liu, H.-F. Zhang, K. Cui, H. Liang, X.-G. Li, Y. Mao, L.-J. Wang, S.-B. Feng, Q. Chen, Q. Zhang, L. Li, N.-L. Liu, C.-Z. Peng, X. Ma, Y. Zhao, J.-W. Pan. Implementation of a 46-node quantum metropolitan area network. npj Quantum Inf., 7, 134(2021).

    [69] B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, A. J. Shields. A quantum access network. Nature, 501, 69-72(2013).

    [70] C.-H. Yeh, C.-W. Chow, C.-H. Hsu. 40-Gb/s time-division-multiplexed passive optical networks using downstream OOK and upstream OFDM modulations. IEEE Photon. Technol. Lett., 22, 118-120(2009).

    [71] C. Xia, N. Chand, A. Velázquez-Bentez, Z. Yang, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, N. Zhao, F. Effenberger, R. Amezcua-Correa, G. Li. Time-division-multiplexed few-mode passive optical network. Opt. Express, 23, 1151-1158(2015).

    [72] A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, J. Wang. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. Opt. Express, 23, 29457-29466(2015).

    [73] A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin. ‘Plug and play’ systems for quantum cryptography. Appl. Phys. Lett., 70, 793-795(1997).

    [74] D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, H. Zbinden. Quantum key distribution over 67 km with a plug&play system. New J. Phys., 4, 41(2002).

    [75] Y. Zhao, B. Qi, X. Ma, H.-K. Lo, L. Qian. Experimental quantum key distribution with decoy states. Phys. Rev. Lett., 96, 070502(2006).

    [76] P. Zhang, K. Aungskunsiri, E. Martn-López, J. Wabnig, M. Lobino, R. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, J. L. O’Brien. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client. Phys. Rev. Lett., 112, 130501(2014).

    [77] D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, G. Zeng. Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol. Phys. Rev. A, 94, 032305(2016).

    [78] https://www.idquantique.com. https://www.idquantique.com

    [79] N. Gisin, S. Fasel, B. Kraus, H. Zbinden, G. Ribordy. Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A, 73, 022320(2006).

    [80] F. Xu, B. Qi, H.-K. Lo. Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys., 12, 113026(2010).

    [81] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).

    [82] N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, G. Leuchs. Trojan-horse attacks threaten the security of practical quantum cryptography. New J. Phys., 16, 123030(2014).

    [83] N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, G. Leuchs. Risk analysis of trojan-horse attacks on practical quantum key distribution systems. IEEE J. Sel. Top. Quantum Electron., 21, 168-177(2014).

    [84] M. Lucamarini, I. Choi, M. B. Ward, J. F. Dynes, Z. Yuan, A. J. Shields. Practical security bounds against the trojan-horse attack in quantum key distribution. Phys. Rev. X, 5, 031030(2015).

    [85] Y. Huang, T. Shen, X. Wang, Z. Chen, B. Xu, S. Yu, H. Guo. Realizing a downstream-access network using continuous-variable quantum key distribution. Phys. Rev. Appl., 16, 064051(2021).

    [86] S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi. Fundamental limits of repeaterless quantum communications. Nat. Commun., 8, 15043(2017).

    [87] M. Fujiwara, J.-I. Kani, H. Suzuki, K. Iwatsuki. Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks. J. Lightwave Technol., 24, 740-746(2006).

    [88] D. Subacius, A. Zavriyev, A. Trifonov. Backscattering limitation for fiber-optic quantum key distribution systems. Appl. Phys. Lett., 86, 011103(2005).

    [89] R. Hui. Introduction to Fiber-Optic Communications(2019).

    [90] F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, H. Hübel. Continuous-variable quantum key distribution with gaussian modulation—the theory of practical implementations. Adv. Quantum Technol., 1, 1800011(2018).

    Yuehan Xu, Tao Wang, Huanxi Zhao, Peng Huang, Guihua Zeng. Round-trip multi-band quantum access network[J]. Photonics Research, 2023, 11(8): 1449
    Download Citation