• Photonics Research
  • Vol. 11, Issue 12, 2159 (2023)
Tianxun Gong1, Boyuan Yan1, Taiping Zhang2, Wen Huang1, Yuhao He1, Xiaoyu Xu3、4, Song Sun3、4、5、*, and Xiaosheng Zhang1、6、*
Author Affiliations
  • 1School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2Tianfu Xinglong Lake Laboratory, Chengdu 610299, China
  • 3Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China
  • 4Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
  • 5e-mail: sunsong_mtrc@caep.cn
  • 6e-mail: zhangxs@uestc.edu.cn
  • show less
    DOI: 10.1364/PRJ.500883 Cite this Article Set citation alerts
    Tianxun Gong, Boyuan Yan, Taiping Zhang, Wen Huang, Yuhao He, Xiaoyu Xu, Song Sun, Xiaosheng Zhang. Fano resonance-enhanced Si/MoS2 photodetector[J]. Photonics Research, 2023, 11(12): 2159 Copy Citation Text show less
    References

    [1] Y. Huang, F. Zhuge, J. Hou, L. Lv, P. Luo, N. Zhou, L. Gan, T. Zhai. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano, 12, 4062-4073(2018).

    [2] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271-1275(2010).

    [3] D. S. Tsai, K. K. Liu, D. H. Lien, M. L. Tsai, C. F. Kang, C. A. Lin, L. J. Li, J. H. He. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 7, 3905-3911(2013).

    [4] S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, K. Kim. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun., 3, 1011(2012).

    [5] M. Shanmugam, C. A. Durcan, B. Yu. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells. Nanoscale, 4, 7399-7405(2012).

    [6] Y. Pang, F. Xue, L. Wang, J. Chen, J. Luo, T. Jiang, C. Zhang, Z. L. Wang. Tribotronic enhanced photoresponsivity of a MoS2 phototransistor. Adv. Sci., 3, 1500419(2016).

    [7] W. Wang, W. Wang, Y. Meng, Q. Quan,, Z. Lai, D. Li, P. Xie, S. Yip, X. Kang, X. Bu, D. Chen, C. Liu, J. C. Ho. Mixed-dimensional anti-ambipolar phototransistors based on 1D GaAsSb/2D MoS2 heterojunctions. ACS Nano, 16, 11036-11048(2022).

    [8] T. Y. Kim, J. Ha, K. Cho, J. Pak, J. Seo, J. Park, J. K. Kim, S. Chung, Y. Hong, T. Lee. Transparent large-area MoS2 phototransistors with inkjet-printed components on flexible platforms. ACS Nano, 11, 10273-10280(2017).

    [9] M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, J. H. He. Monolayer MoS2 heterojunction solar cells. ACS Nano, 8, 8317-8322(2014).

    [10] L. Najafi, B. Taheri, B. Martin-Garcia, S. Bellani, D. Di Girolamo, A. Agresti, R. Oropesa-Nunez, S. Pescetelli, L. Vesce, E. Calabro, M. Prato, A. E. Del Rio Castillo, A. Di Carlo, F. Bonaccorso. MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%. ACS Nano, 12, 10736-10754(2018).

    [11] M. Karimipour, S. Khazraei, B. J. Kim, G. Boschloo, E. M. J. Johansson. Efficient and bending durable flexible perovskite solar cells via interface modification using a combination of thin MoS2 nanosheets and molecules binding to the perovskite. Nano Energy, 95, 107044(2022).

    [12] J. R. Nasr, N. Simonson, A. Oberoi, M. W. Horn, J. A. Robinson, S. Das. Low-power and ultra-thin MoS2 photodetectors on glass. ACS Nano, 14, 15440-15449(2020).

    [13] K. S. Kim, Y. J. Ji, K. H. Kim, S. Choi, D. H. Kang, K. Heo, S. Cho, S. Yim, S. Lee, J. H. Park, Y. S. Jung, G. Y. Yeom. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction. Nat. Commun., 10, 4701(2019).

    [14] D. Lu, Y. Chen, L. Kong, C. Luo, Z. Lu, Q. Tao, W. Song, L. Ma, Z. Li, W. Li, L. Liu, Q. Li, X. Yang, J. Li, J. Li, X. Duan, L. Liao, Y. Liu. Strain-plasmonic coupled broadband photodetector based on monolayer MoS2. Small, 18, e2107104(2022).

    [15] X. Chen, X. Yang, Q. Lou, Y. Zhang, Y. Chen, Y. Lu, L. Dong, C.-X. Shan. Fabry-Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector. Nano Res., 15, 4395-4402(2022).

    [16] J. Li, C. Nie, F. Sun, L. Tang, Z. Zhang, J. Zhang, Y. Zhao, J. Shen, S. Feng, H. Shi, X. Wei. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces, 12, 8429-8436(2020).

    [17] S. Kallatt, G. Umesh, N. Bhat, K. Majumdar. Photoresponse of atomically thin MoS2 layers and their planar heterojunctions. Nanoscale, 8, 15213-15222(2016).

    [18] G. H. Shin, J. Park, K. J. Lee, G. B. Lee, H. B. Jeon, Y. K. Choi, K. Yu, S. Y. Choi. Si–MoS2 vertical heterojunction for a photodetector with high responsivity and low noise equivalent power. ACS Appl. Mater. Interfaces, 11, 7626-7634(2019).

    [19] L. Wang, J. S. Jie, Z. B. Shao, Q. Zhang, X. H. Zhang, Y. M. Wang, Z. Sun, S. T. Lee. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors. Adv. Funct. Mater., 25, 2910-2919(2015).

    [20] Y. Zhang, Y. Yu, L. Mi, H. Wang, Z. Zhu, Q. Wu, Y. Zhang, Y. Jiang. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible–near-infrared photodetectors. Small, 12, 1062-1071(2016).

    [21] V. Dhyani, P. Dwivedi, S. Dhanekar, S. Das. High performance broadband photodetector based on MoS2/porous silicon heterojunction. Appl. Phys. Lett., 111, 191107(2017).

    [22] W. Cai, J. Wang, Y. He, S. Liu, Q. Xiong, Z. Liu, Q. Zhang. Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction. Nano Micro Lett., 13, 74(2021).

    [23] S. Zhu, C. Wang, H. Shou, P. Zhang, P. Wan, X. Guo, Z. Yu, W. Wang, S. Chen, W. Chu, L. Song. In situ architecting endogenous heterojunction of MoS2 coupling with Mo2CTx MXenes for optimized Li+ storage. Adv. Mater., 34, e2108809(2022).

    [24] K. L. Tai, C. W. Huang, R. F. Cai, G. M. Huang, Y. T. Tseng, J. Chen, W. W. Wu. Atomic-scale fabrication of in-plane heterojunctions of few-layer MoS2 via in situ scanning transmission electron microscopy. Small, 16, e1905516(2020).

    [25] N. Ansari, E. Mohebbi. Increasing optical absorption in one-dimensional photonic crystals including MoS2 monolayer for photovoltaics applications. Opt. Mater., 62, 152-158(2016).

    [26] N. Ansari, E. Mohebbi. Broadband and high absorption in Fibonacci photonic crystal including MoS2 monolayer in the visible range. J. Phys. D, 51, 115101(2018).

    [27] G. Gao, J. Yu, X. Yang, Y. Pang, J. Zhao, C. Pan, Q. Sun, Z. L. Wang. Triboiontronic transistor of MoS2. Adv. Mater., 31, e1806905(2019).

    [28] B. Rahmati, I. Hajzadeh, M. Taheri, R. Karimzadeh, S. Mohajerzadeh, S. M. Mohseni. Plasmonic improvement photoresponse of vertical-MoS2 nanostructure photodetector by Au nanoparticles. Appl. Surf. Sci., 490, 165-171(2019).

    [29] J. D. Lin, H. Li, H. Zhang, W. Chen. Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl. Phys. Lett., 102, 203109(2013).

    [30] T. Devkota, B. S. Brown, G. Beane, K. Yu, G. V. Hartland. Making waves: radiation damping in metallic nanostructures. J. Chem. Phys., 151, 080901(2019).

    [31] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [32] A. Hajebifard, P. Berini. Fano resonances in plasmonic heptamer nano-hole arrays. Opt. Express, 25, 18566-18580(2017).

    [33] K. Liu, X. Xue, V. Sukhotskiy, E. P. Furlani. Optical Fano resonance in self-assembled magnetic–plasmonic nanostructures. J. Phys. Chem. C, 120, 27555-27561(2016).

    [34] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [35] G. T. Cao, S. H. Dong, L. M. Zhou, Q. Zhang, Y. Deng, C. Wang, H. Zhang, Y. Chen, C. W. Qiu, X. K. Liu. Fano resonance in artificial photonic molecules. Adv. Opt. Mater., 8(2020).

    [36] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu. Anomalous lattice vibrations of singleand few-layer MoS2. ACS Nano, 4, 2695-2700(2010).

    [37] Z. W. Li, S. Q. Hu, Q. Zhang, R. J. Tian, L. P. Gu, Y. S. Zhu, Q. C. Yuan, R. X. Yi, C. Li, Y. Liu, Y. Hao, X. T. Gan, J. L. Zhao. Telecom-band waveguide-integrated MoS2 photodetector assisted by hot electrons. ACS Photon., 9, 282-289(2022).

    [38] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol., 8, 497-501(2013).

    Tianxun Gong, Boyuan Yan, Taiping Zhang, Wen Huang, Yuhao He, Xiaoyu Xu, Song Sun, Xiaosheng Zhang. Fano resonance-enhanced Si/MoS2 photodetector[J]. Photonics Research, 2023, 11(12): 2159
    Download Citation