• Photonics Research
  • Vol. 5, Issue 5, 396 (2017)
Junda Zhu1, Ying Zhong2, and Haitao Liu1、*
Author Affiliations
  • 1Key Laboratory of Optical Information Science and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.1364/PRJ.5.000396 Cite this Article Set citation alerts
    Junda Zhu, Ying Zhong, Haitao Liu. Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities[J]. Photonics Research, 2017, 5(5): 396 Copy Citation Text show less
    References

    [1] S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett., 28, 272-274(2003).

    [2] A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala. Label-free, single-molecule detection with optical microcavities. Science, 317, 783-787(2007).

    [3] F. Vollmer, S. Arnold, D. Keng. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA, 105, 20701-20704(2008).

    [4] J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46-49(2010).

    [5] L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428-432(2011).

    [6] V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett., 13, 3347-3351(2013).

    [7] L. B. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, Q. H. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 25, 5616-5620(2013).

    [8] S. K. Ozdemir, J. G. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA, 111, E3836-E3844(2014).

    [9] M. D. Baaske, M. R. Foreman, F. Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol., 9, 933-939(2014).

    [10] B. B. Li, W. R. Clements, X. C. Yu, K. B. Shi, Q. H. Gong, Y. F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 111, 14657-14662(2014).

    [11] J. Su, A. F. G. Goldberg, B. M. Stoltz. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl., 5, e16001(2016).

    [12] B. Q. Shen, X. C. Yu, Y. Y. Zhi, L. Wang, D. H. Kim, Q. H. Gong, Y. F. Xiao. Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity. Phys. Rev. Appl., 5, 024011(2016).

    [13] W. Y. Yu, W. C. Jiang, Q. Lin, T. Lu. Cavity optomechanical spring sensing of single molecules. Nat. Commun., 7, 12311(2016).

    [14] D. S. Weiss, V. Sandoghdar, J. Hare, V. L. Seguin, J. M. Raimond, S. Haroche. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett., 20, 1835-1837(1995).

    [15] I. Teraoka, S. Arnold. Resonance shifts of counterpropagating whispering-gallery modes: degenerate perturbation theory and application to resonator sensors with axial symmetry. J. Opt. Soc. Am. B, 26, 1321-1329(2009).

    [16] J. T. Rubin, L. Deych. Ab initio theory of defect scattering in spherical whispering-gallery-mode resonators. Phys. Rev. A, 81, 053827(2010).

    [17] M. R. Foreman, F. Vollmer. Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles. New J. Phys., 15, 083006(2013).

    [18] L. Deych, M. Ostrowski, Y. Yi. Defect-induced whispering-gallery-mode resonances in optical microdisk resonators. Opt. Lett., 36, 3154-3156(2011).

    [19] L. Deych, V. Shuvayev. Theory of nanoparticle-induced frequency shifts of whispering-gallery-mode resonances in spheroidal optical resonators. Phys. Rev. A, 92, 013842(2015).

    [20] A. Mazzei, S. Goetzinger, L. D. Menezes, G. Zumofen, O. Benson, V. Sandoghdar. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett., 99, 173603(2007).

    [21] X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, Q. H. Gong. Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator. Phys. Rev. A, 83, 023803(2011).

    [22] Y. W. Hu, L. B. Shao, S. Arnold, Y. C. Liu, C. Y. Ma, Y. F. Xiao. Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity. Phys. Rev. A, 90, 043847(2014).

    [23] K. Srinivasan, O. Painter. Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. A, 75, 023814(2007).

    [24] Y. C. Shen, J. T. Shen. Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers. Phys. Rev. A, 85, 013801(2012).

    [25] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 17, 1051-1057(2000).

    [26] Q. Li, A. A. Eftekhar, Z. X. Xia, A. Adibi. Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators. Phys. Rev. A, 88, 033816(2013).

    [27] L. Rayleigh. Theory of Sound, II(1878).

    [28] X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. T. Yu. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [29] P. Miao, Z. F. Zhang, J. B. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, L. Feng. Orbital angular momentum microlaser. Science, 353, 464-467(2016).

    [30] S. Longhi, L. Feng. PT-symmetric microring laser-absorber. Opt. Lett., 39, 5026-5029(2014).

    [31] D. Bucci, B. Martin, A. Morand. Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic fourier modal method. Proc. SPIE, 7597, 75970U(2010).

    [32] X. Du, S. Vincent, T. Lu. Full-vectorial whispering-gallery-mode cavity analysis. Opt. Express, 21, 22012-22022(2013).

    [33] A. Yariv. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett., 36, 321-322(2000).

    [34] R. W. Boyd, J. E. Heebner. Sensitive disk resonator photonic biosensor. Appl. Opt., 40, 5742-5747(2001).

    [35] J. Ctyroky, I. Richter, M. Sinor. Dual resonance in a waveguide-coupled ring microresonator. Opt. Quantum Electron., 38, 781-797(2006).

    [36] M. Hammer. HCMT models of optical microring-resonator circuits. J. Opt. Soc. Am. B, 27, 2237-2246(2010).

    [37] J. T. Shen, S. H. Fan. Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. Phys. Rev. A, 79, 023838(2009).

    [38] J. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A, 84, 063828(2011).

    [39] S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, J. H. Shin. Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator. Opt. Express, 18, 20638-20644(2010).

    [40] C. Vassallo. Optical Waveguide Concepts(1991).

    [41] J. P. Hugonin, P. Lalanne. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. J. Opt. Soc. Am. A, 22, 1844-1849(2005).

    [42] H. Liu. DIF CODE for Modeling Light Diffraction in Nanostructures(2010).

    [43] L. Li. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J. Opt. A, 5, 345-355(2003).

    [44] L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13, 1024-1035(1996).

    [45] H. Liu. Coherent-form energy conservation relation for the elastic scattering of a guided mode in a symmetric scattering system. Opt. Express, 21, 24093-24098(2013).

    [46] E. E. Tyrtyshnikov. A Brief Introduction to Numerical Analysis(1997).

    [47] K. R. Hiremath, V. N. Astratov. Perturbations of whispering gallery modes by nanoparticles embedded in microcavities. Opt. Express, 16, 5421-5426(2008).

    [48] F. Vollmer, L. Yang. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 1, 267-291(2012).

    [49] M. Borselli, T. J. Johnson, O. Painter. Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Opt. Express, 13, 1515-1530(2005).

    [50] S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka. MicroParticle photophysics illuminates viral bio-sensing. Faraday Discuss., 137, 65-83(2008).

    [51] W. Kim, S. K. Ozdemir, J. G. Zhu, L. Yang. Observation and characterization of mode splitting in microsphere resonators in aquatic environment. Appl. Phys. Lett., 98, 141106(2011).

    [52] H. Liu. Symmetry in the elementary scattering of surface plasmon polaritons and a generalized symmetry principle. Opt. Lett., 35, 2876-2878(2010).

    [53] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [54] Y. Li, H. Liu, H. Jia, F. Bo, G. Zhang, J. Xu. Fully-vectorial modeling of cylindrical microresonators with aperiodic Fourier modal method. J. Opt. Soc. Am. A, 31, 2459-2466(2014).

    [55] E. Popov. Gratings: Theory and Numeric Applications(2014).

    CLP Journals

    [1] Daquan Yang, Fei Gao, Qi-Tao Cao, Chuan Wang, Yuefeng Ji, Yun-Feng Xiao. Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities[J]. Photonics Research, 2018, 6(2): 99

    [2] Kathleen McGarvey, Pablo Bianucci. General treatment of dielectric perturbations in optical rings[J]. Advanced Photonics Nexus, 2022, 1(1): 016004

    Junda Zhu, Ying Zhong, Haitao Liu. Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities[J]. Photonics Research, 2017, 5(5): 396
    Download Citation