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Optical whispering gallery microcavities with high-quality factors have shown great potential toward achieveing
ultrahigh-sensitivity sensing up to a single molecule or nanoparticle, which raises a huge demand on a deep
theoretical insight into the crucial phenomena such as the mode shift, mode splitting, and mode broadening
in sensing experiments. Here we propose an intuitive model to analyze these phenomena from the viewpoint
of the nanoparticle-induced multiple scattering of the azimuthally propagating mode (APM). The model unveils
explicit relations between these phenomena and the phase change and energy loss of the APM when scattered at
the nanoparticle; the model also explains the observed polarization-dependent preservation of one resonance
and the particle-dependent redshift or blueshift. The model indicates that the particle-induced coupling between
the pair of unperturbed degenerate whispering gallery modes (WGMs) and the coupling between the WGMs and
the free-space radiation modes, which are widely adopted in current theoretical formalisms, are realized via the
reflection and scattering-induced free-space radiation of the APM, respectively, and additionally exhibits the con-
tribution of cross coupling between the unperturbed WGMs and other different WGMs to forming the splitting
resonant modes, especially for large particles. © 2017 Chinese Laser Press

OCIS codes: (260.5740) Resonance; (130.6010) Sensors; (290.5850) Scattering, particles; (290.4210) Multiple scattering.
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1. INTRODUCTION

As a next-generation sensor, whispering gallery resonators
(WGRs) that support optical whispering gallery modes
(WGMs) with a high quality (Q) factor possess ultrahigh sen-
sitivity, long photon lifetime, and strong light confinement, and
are widely used in label-free detection [1–13]. Tiny perturba-
tions, e.g., adsorption of a single molecule [2,6,9,11,13], virus
[3,5,7], or nanoparticle [4,7,8,10,12] onto the surface of the
WGR can change the resonance remarkably. Via tuning the
excited wavelength and monitoring the transmission or reflec-
tion spectrum of the WGR, the change of resonance can be
detected in the form of mode shift [1–3,6,9,11–13], mode
splitting [4,5,8,10,14], or mode broadening [7,9,12].

To understand mode shift [1] and mode broadening [9]
for sensing applications, a reactive sensing principle is proposed
based on a first-order perturbation theory, and the perturbed
eigenfrequency is expressed as a ratio of the perturbed energy
relative to the unperturbed energy of WGMs. A degenerate
perturbation theory [15] is developed when the interaction
between the particle and WGM is strong enough to resolve

a mode splitting. To give a complete description, a rigorous
ab initio analysis based on the standard multisphere Mie for-
malism is performed for a spherical [16,17] 2D disk [18] and
spheroidal optical resonators [19]. An intuitive semi-quantum
electrodynamics (semi-QED) model [20] is proposed to
describe the perturbation-induced coupling between two coun-
terpropagating quantized WGMs and the coupling between
WGMs and free-space radiation modes by deriving the system’s
Heisenberg equations of motion, with a classical dipole-
approximation of perturbations. The semi-QED is widely used
to explain the mode splitting [4,20,21] and mode broadening
[7,22]. QED formalisms with the perturbation of quantum
dot [23] or plasmonic nanoparticle [24] quantized as a two-level
system are reported. Such perturbation-induced coupling of
modes also can be described by a set of time-domain coupling
equations derived from classical electrodynamics [25,26].

In its physical essence, the WGM is formed by azimuthally
propagating modes (APMs) that satisfy the resonance condition
[27]. This understanding of WGMs has inspired a variety of
exciting works. For instance, by introducing an azimuthally
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periodic perturbation of WGRs that causes out-of-plane
scattering of the APM, optical vortex beam emitters [28],
and orbital angular momentum microlaser [29] are realized.
Lasing and coherent perfect absorption are achieved simultane-
ously by using azimuthally periodic PT-symmetric WGRs [30].
WGMs can be modeled numerically with the use of APMs
under a cylindrical coordinate system [31,32]. The viewpoint
of APMs also is used to describe the coupling between the cir-
cular microresonator and straight bus waveguide [33–36].

In this paper, we report an intuitive and quantitativemodel to
clarify the impact of nanoparticle-induced scattering of APMs on
the resonant modes of WGRs. The model is built up by con-
sidering a dynamical multiple-scattering process of APMs at the
adsorbed nanoparticle and can comprehensively reproduce all
the features of the resonant mode of WGRs such as the reso-
nance frequency, the Q factor, and the field distribution.
Simple analytical expressions describing the dependence of the
mode shift, mode splitting, and mode broadening on the scat-
tering coefficients of APMs are derived. The model is based on a
first-principle calculation of the APM scattering coefficients
without using any fitting or artificial setting of model parameters,
which ensures a quantitative prediction and a further unveiling
of the contribution of cross coupling between different WGMs
to forming the resonant mode. The proposed model provides
deep theoretical insight into the crucial phenomena of mode
shift, mode broadening, and mode splitting for sensing applica-
tions from the viewpoint of APMs and has the strength to further
clarify the physical origin of the particle-induced couplings
among WGMs and radiation modes that are widely adopted
in current theoretical formalisms [20–22,26,37].

2. THEORETICAL MODEL

For simplicity, we consider a 2D cylindrical microcavity [18,38]
[invariant along the z-axis, as sketched in Fig. 1(a)] and the de-
veloped model applies as well 3D structures (such as microdisk
[39] or microtoroid [4] resonators). A sectorial nanoparticle (cen-
tered at ϕ � 0 with a side length D), whose geometry is chosen
to facilitate the calculation, is adsorbed on the surface of the mi-
crocavity (with a radius R). The refractive indices of the nano-
particle, the cavity, and the surrounding medium take values
1.59 (polystyrene), 1.45 (silica), and 1 (air), respectively. The
cavity is assumed to be excited by an external source, and the

interaction between the cavity and exciting device (such as
tapered fiber [4] or prism [20]) is neglected [15,19].

Without the perturbation of the nanoparticle, each pair of
degenerate WGMs are formed by two matched counterpropa-
gating APMs with a phase shift of 2mπ over a 2π azimuthal angle
[31,32]. The WGMs with different complex resonance frequen-
cies can be indexed asTE∕TMs;m, with TE/TM denoting polari-
zation (electric/magnetic vectors along the invariant z direction),
s being the radial number (corresponding to APMs with different
propagation constants along the azimuthal direction) and m
being the azimuthal number. With the adsorption of a nanopar-
ticle, the degeneracy of the WGMs is lifted, which results in a
pair of splitting resonant modes [4,5,8,10]. Next we will try to
build up an analytical model to reproduce the splitting resonant
modes by considering an intuitive multiple-scattering picture
that incorporates the elastic transmission and reflection of
APMs at the particle. In the model only two matched counter-
propagating APMs (corresponding to the unperturbed degener-
ate WGMs) are considered, and all other mismatched APMs
(corresponding to other different WGMs) are neglected. As
sketched in Fig. 1(a), we use a and b to denote the unknown
complex amplitude coefficients of the APMs propagating in pos-
itive and negative ϕ directions, respectively. To determine a and
b, a set of coupled-APM equations can be written:

a � auτ� buρ; (1a)

b � buτ� auρ; (1b)

where ρ and τ are defined as the reflection and transmission co-
efficients of the APM at the particle that is assumed to be mirror-
symmetric about ϕ � 0 [as sketched in Fig. 1(b)], respectively,
u � exp�ik0neff 2π� is the phase shift factor of the APM traveling
azimuthally over one round of the cavity, k0 � 2πν∕c (ν and c
being the frequency and the speed of light in vacuum, respec-
tively), and neff is the complex effective index of the APM that is
a leaky waveguide eigenmode (with leaky loss so that neff is gen-
erally a complex number) [40]. Here neff is obtained with a full-
wave aperiodic Fourier modal method (a-FMM) [41–43], and
ρ and τ are obtained as the scattering-matrix elements with the
a-FMM [44] (more details about the calculation of neff , ρ,
and τ under cylindrical coordinate system can be found in
Appendix A, and some earlier work on the calculation of neff
can be found in Ref. [31]). The first-principle calculation of all
quantities used in the model ensures a solid electromagnetic
foundation and thus quantitative prediction of the model.
Equation (1a) is written in view that the APM propagating along
the positive ϕ direction (with coefficient a) results from two con-
tributions, one contribution from the transmission (τ) of itself
(with coefficient a and a one-round phase shift factor u) at
the particle, and the other contribution from the reflection
(ρ) of the counterpropagating APM (with coefficient b and a
phase shift factor u) at the particle. Equation (1b) is written
in a similar way. Equation (1) can be understood in a rigorous
sense under a cylindrical coordinate system, as illustrated in
Fig. 5(b) in Appendix A. To obtain nontrivial solutions of
Eq. (1), which represent the resonant modes, the determinant
of the coefficient matrix should be zero, which yields

u�τ� ρ� � 1: (2)

Fig. 1. (a) Schematic of a z-invariant cylindrical microcavity with a
nanoparticle (blue sector) adsorbed on its surface. a and b denote the
complex amplitude coefficients of the two counterpropagating APMs
matched to the resonant mode. (b) Scattering coefficients ρ and τ char-
acterizing the reflection and transmission of the APM at the nanoparticle.
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Equation (2) can be used to determine the complex resonance
frequency νc of the pair of splitting resonant modes. Substituting
Eq. (2) into Eq. (1), one obtains a � b [corresponding to τ� ρ
in Eq. (2)] or a � −b (corresponding to τ − ρ), which is defined
as a symmetric (S) or anti-symmetric (AS) mode [4,20] (with
electrical vector being symmetric or anti-symmetric about
ϕ � 0). For the special case without the particle, i.e., ρ � 0
and τ � 1, Eq. (2) reduces to u � 1, indicating that the
one-round phase shift of the APM is multiples of 2π [31,32],
which forms the two unperturbed degenerate WGMs. For
the case with the presence of the particle, similar physical mean-
ing preserves for Eq. (2) by additionally incorporating the
particle-induced phase change arg�τ� ρ� of APMs [45].
Equations (1) and (2) explicitly show that the degeneracy of
the WGMs preserves if ρ � 0, meaning that the particle-
induced coupling between the two unperturbed counterpropa-
gating WGMs (formed by the two matched APMs), which are
widely adopted in current theoretical formalisms [20–22,26,37],
is realized via the reflection of APMs (ρ ≠ 0) [35]. Here, note
that the fields of the two counterpropagating APMs matched
to the splitting modes are almost identical to the fields of the
two counterpropagating unperturbed WGMs except for some
subtle difference: they correspond to slightly different complex
resonance frequencies; within the deep subwavelength ϕ
range of the nanoparticle, the matched APMs have no definition
(Appendix A), while the unperturbed WGMs have
[15,20,26,38]. The latter difference arises from the different
nature of the APM and the WGM: the APM is a waveguide
mode (corresponding to a dispersion curve describing the
dependence of k0neff on frequency, see more details in
Appendix A) [31,33–36,40], while the WGM is a resonant
eigenmode (corresponding to a single complex eigenfrequency)
[19,20,26]. To seek the solution, Eq. (2) can be rewritten as

ν � c
4π2neff

�− arg�τ� ρ� � 2πm� i ln jτ� ρj�

≈
c

4π2
p

Re�neff �

�
1� i

�
q
p
−
Im�neff �
Re�neff �

��
; (3)

where p � − arg�τ� ρ� � 2πm, q � ln jτ� ρj. Details for de-
riving the approximate equality in Eq. (3) can be found in
Appendix B. Thanks to the weak dependence of neff , ρ, and
τ on frequency ν [and thus the weak dependence of the right
side of Eq. (3) denoted as f �ν�], the transcendental Eq. (3)
can be solved with the contractive mapping method [46] with
the iteration formula νN�1 � f �νN �, which converges fast and
is fairly insensitive to the initial value ν0 [more details on solving
Eq. (3) can be found in Appendix B]. In fact, a crude evaluation
of the complex resonance frequency νc can be obtained by
calculating f �ν� at a certain frequency.

3. RESULTS AND DISCUSSION

With the complex eigenfrequency νc obtained, we can then
determine the several key parameters in sensing applications
[1–13], the frequency shift δ � Re�νc� − Re�νc;0� (νc;0 being
the complex resonance frequency of the unperturbed
WGM), the Q-factor Q � −Re�νc�∕�2 Im�νc�� and the fre-
quency splitting Δ � jRe�νc;S� − Re�νc;AS�j (νc;S and νc;AS
being the complex resonance frequencies of the S-mode and

the AS-mode, respectively). The mode splitting can be resolved
only if Δ is greater than the sum w � −�Im�νc;S� � Im�νc;AS��
of the linewidths of the S-mode and the AS-mode [20,37].
Note that the experimentally resolvable splitting also depends
on the externalQ-factor [4] related to the fiber WGR coupling.

Now we check the validity of the model. We first consider
the pair of splitting resonant modes arising from the unper-
turbed TM1;42 WGM for cavity radius R � 8 μm. The quan-
tities δ, Q , and Δ − w as a function of nanoparticle size D are
plotted in Figs. 2(a), 2(b), and 2(f ), respectively, which are ob-
tained with the finite element method (FEM) using COMSOL
Multiphysics Software (circles), the original model (solid
curves), and the simplified model (dashed curves). Here the
original model and the simplified model refer to the equality
and the approximate equality in Eq. (3), respectively. It is seen
that the prediction of the original model and that of the sim-
plified model have no observable difference (the dashed curves
are in fact completely superimposed by the solid curves), and
both predictions are quite accurate compared with the FEM
numerical results, except for slight deviations for large particles
(D > 600 nm), which will be explained later. Similar accuracy
of the model can be observed for TM1;59 (Q close to 108) and
TE3;100 (Q over 108) modes with R � 11 μm and 20 μm,
respectively (Fig. 7 in Appendix B).

Fig. 2. (a) Frequency shift δ [relative to the unperturbed TM1;42
WGM with resonance frequency Re�νc;0� � 1.969550 × 1014 Hz]
and (b) Q-factor of S-mode (blue) and AS-mode (red) as a function
of nanoparticle size D. Inset in (b) shows 1∕Qprop (dotted curves)
and 1∕Q scat (dashed–dot curves). (c)–(e) arg�τ� ρ�, jτ� ρj, and
neff of the resonant modes solved for different D (the solid and dashed
curves corresponding to left and right axes, respectively, the blue and red
curves corresponding to the S-mode and the AS-mode, respectively).
(f)Δ − w (characterizing the resolvability of mode splitting) for different
D. The inset shows details for small particle sizes. In (a), (b), and (f), the
solid curves, dashed curves (completely superimposed by the solid
curves), and circles represent the predictions of the original model,
the simplified model, and the FEM numerical results, respectively.
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As shown in Figs. 2(a) and 2(b), the redshift (δ < 0) of the
resonance frequency increases and the Q-factor decreases with
the increase of nanoparticle size D [15,47]. To achieve an
understanding, analytical expressions of δ and Q can be
obtained from Eq. (3):

δ

Re�νc;0�
≈ −

arg�τ� ρ�
2πm

; (4a)

1

Q
≈
2 Im�neff �
Re�neff �

−
ln jτ� ρj

πm
; (4b)

where Re�νc;0� ≈ cm∕�2πRe�neff �� is the resonance frequency of
the unperturbed WGM. In Eq. (4), τ and ρ are dependent on
D and frequency ν [expressed as τ � τ�D; ν�, ρ � ρ�D; ν�],
while neff is independent of D�neff � neff �ν��, with ν taking
the value of eigenfrequency νc, which is further dependent
on D�νc � νc�D��. In view of the weak dependence of neff ,
ρ, and τ on frequency ν, we obtain τ ≈ τ�D�, ρ ≈ ρ�D�,
and neff approximately independent of D [as confirmed
by Figs. 2(c)–2(e)]. Therefore, Eq. (4a) indicates that the
frequency shift δ is simply proportional to − arg�τ� ρ�.
Physically, arg�τ� ρ� represents the phase change of the
two counterpropagating coherently incident APMs when scat-
tered at the nanoparticle [45] for the S-mode and arg�τ − ρ� for
the AS-mode. As shown by the numerical results in Fig. 2(c),
such scattering-induced phase change remains positive and
increases monotonously with the increase of particle size.
Blueshift (δ > 0) may happen [4,24,47] if the refractive index
of the particle is smaller than that of its surrounding medium
(Fig. 8 in Appendix B). The positive (resp. negative) arg�τ� ρ�
and their monotonous dependence on D can be understood by
considering that the incident APM hops over the nanoparticle
via another APM with a higher (resp. lower) effective index
(Appendix B), which provides insight into the increase of
the effective optical path length [11,48] or average index
[47] that causes the mode shift.

Concerning Eq. (4b), the first and the second terms corre-
spond to Q-factors related to the propagation loss (1∕Qprop,
composed of leaky loss and absorption loss of APMs, the latter
being in fact excluded by considering lossless material here) and
the particle-scattering induced loss (1∕Q scat) [9,49,50], which
are shown in the inset of Fig. 2(b) and exhibit a crossing point
Dc . It is seen that 1∕Qprop dominates over 1∕Q scat for D < Dc
and vice versa for D > Dc. Comparison between the insets of
Figs. 2(b) and 7(b) (with the same radial number 1 of
APMs) shows thatDc becomes smaller for higherQ factors (with
larger azimuthal number), which can be understood in view of
the decrease of 1∕Qprop and the approximate invariance of
1∕Q scat. A lower Q-factor for a larger D can be understood in
view that jτ� ρj < 1 holds due to the energy conservation [45]
and jτ� ρj decreases with the increase of the scattering-induced
energy loss for largerD [as confirmed by Fig. 2(d)]. This analysis
shows that the particle-induced coupling between the unper-
turbed WGMs and the free-space radiation modes widely
adopted in current theoretical formalisms [20–22,26,37] is real-
ized via the scattering-induced free-space radiation of APMs.
Note that if we define n 0

eff � neff∕R so that the phase shift factor
of APM can be expressed as exp�ik0neffϕ� � exp�ik0n 0

effL� with

L � ϕR denoting the arc length, then Re�n 0
eff � � Re�neff �∕R ≈

1.27 is reasonably between the refractive indices 1 and 1.45 of
air and silica.

Due to the different amounts of frequency shift between the
S-mode and AS-mode, the phenomenon of mode splitting
[4,20] emerges if Δ − w > 0. Figure 2(f ) shows that, with
the increase of particle size D, Δ − w first increases from neg-
ative (no mode splitting but mode shift [1,9] and broadening
[7,9,12] with high Q-factors for D < 40 nm, below the red
dashed–dot line) to positive values (with mode splitting),
and then decreases to large negative values (no mode splitting
with low Q-factors for D > 300 nm). This observation is con-
sistent with earlier results [15,51]. Simple analytical expressions
of Δ and w can be obtained from Eq. (3):

Δ
Re�νc;0�

≈
1

2πm
j arg�τ� ρ� − arg�τ − ρ�j; (5a)

w
Re�νc;0�

≈
2 Im�neff �
Re�neff �

−
1

2πm
�ln jτ� ρj � ln jτ − ρj�: (5b)

Now we look at the case of TE resonant modes. Numerical
results fully parallel with those in Fig. 2 but corresponding to
unperturbed TE1;42 WGM are shown in Fig. 3. In sharp
contrast with TM modes, it is seen that the frequency shift
δ and Q-factor of the TE AS-mode (red curves) are almost
unchanged until the nanoparticle size increases to large values
(D > 200 nm). This phenomenon earlier discussed in
Ref. [19] in terms of field symmetries under different polariza-
tions can be explained here with a symmetry relation [52]
τ − 1 ≈ ρ of APM scattering coefficients. The symmetry rela-
tion derives from a mirror symmetry of the particle-induced
scattered electric field about ϕ � 0, which arises from the mir-
ror symmetry of the incident APM electric field (with only Ez

Fig. 3. Same as Fig. 2 but for the resonant modes corresponding
to the unperturbed TE1;42 WGM [with resonance frequency
Re�νc;0� � 1.941902 × 1014 Hz].
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component under TE polarization) within the deep subwave-
length ϕ range of the nanoparticle. As numerically confirmed
by the red curves in Figs. 3(c) and 3(d), τ − ρ ≈ 1 holds for
small values of D but becomes less accurate for large values
of D due to the vanishing of the symmetry. Inserting τ − ρ ≈ 1
into the right side of Eq. (3), we simply obtain νc;AS ≈
cm∕�2πneff � for the AS-mode, which is exactly the complex
resonance frequency of the unperturbed WGM in absence
of the nanoparticle �τ � 1; ρ � 0�. Our interpretation here
provides a new viewpoint to understand the preservation of res-
onance in terms of the scattering properties of APMs at the
nanoparticle, in comparison with the viewpoint in terms of
the location of the nanoparticle at the node of the anti-symmet-
ric resonant mode [4,19,20]. For TE S-mode or TM modes,
the resonance frequency and Q-factor change with the particle
size because no similar symmetry relation works. The conclu-
sions here are fully consistent with those from the rigorous
ab initio analysis [18,19] but are only partially consistent with
those from the semi-QED theory [20] for which the preserva-
tion of one resonance is independent of mode polarization.

The previous results show that, for considerably large particle
size (D > 600 nm), the model exhibits observable deviation
from the numerical FEM results. This deviation unveils a fact
that, besides the matched APMs considered in the model, other
mismatched APMs also have contributions to forming the res-
onant mode, especially for large particles. This could be surpris-
ing because, in current theoretical formalisms [4,20–22,26,38],
the resonant mode is commonly treated as a superposition of
two unperturbed counterpropagating WGMs (formed by the
matched APMs). The contribution of mismatched APMs im-
plies the existence of the cross coupling between the unperturbed

WGMs and other different WGMs. To see this contribution
directly, we show the residual field (denoted by Eres) that ex-
cludes the matched APMs’ field (EAPM) contained in the total
field (Etot) of the resonant mode, i.e., Eres � Etot − EAPM.
Details for calculating the residual field with the mode orthog-
onality can be found in Appendix C. As shown by the numerical
results in Fig. 4 for two particle sizes (D � 100 and 500 nm),
the residual field is much weaker than the matched APM field
for both particle sizes, which explains the high accuracy of the
model. On the other hand, the residual field for D � 500 nm
is much stronger than that for D � 100 nm. In more detail,
the mean electric-field intensities of the residual field
at the outer surface of the microcavity (excluding the ϕ range
of the particle where the APM has no definition) are 0.0018
and 0.0458 for D � 100 and 500 nm, respectively, which
explains the lower accuracy of the model for larger particle
sizes.

4. CONCLUSIONS

An intuitive and quantitative model for the pair of particle-
induced splitting resonant modes of WGRs is built up by
considering a dynamical multiple-scattering process of two coun-
terpropagating APMs matched to the resonant modes. Simple
analytical expressions of the resonance frequency and the
Q-factor of the splitting modes in terms of the APM scattering
coefficients at the nanoparticle are derived. The model unveils
explicit relations between the particle-induced phase change
and energy loss of the APM and the crucial phenomena of mode
shift, mode broadening, and mode splitting for ultrahigh-
sensitivity sensing applications; the model further explains the
polarization-dependent preservation of one resonance and the
particle-dependent redshift or blueshift with the symmetry
and phase change in the scattering of APMs, respectively.
The particle-induced coupling between the two counterpropa-
gating unperturbed WGMs and the coupling between the
WGMs and free-space radiation modes are shown to arise from
the particle-induced reflection and free-space radiation of the
APM, respectively. Contribution of mismatched APMs (corre-
sponding to WGMs other than the unperturbed WGMs) to
forming the splitting resonant modes especially for large particles
is identified. The present model can be readily extended to more
complex cases such as asymmetric particles [17], resonant plas-
monic particles [12,24], or particle ensembles [21,38,53].

APPENDIX A: CALCULATION OF THE COMPLEX
EFFECTIVE INDEX AND SCATTERING
COEFFICIENTS OF THE AZIMUTHALLY
PROPAGATING MODE UNDER A CYLINDRICAL
COORDINATE SYSTEM

In the main text, the resonant mode of the whispering gallery
microcavity with the adsorption of a nanoparticle is reproduced
by the model with the use of the matched azimuthally propa-
gating mode (APM) and their scattering coefficients at the
nanoparticle. The APMs and their scattering coefficients can
be calculated by solving the Maxwell’s equations under the
cylindrical coordinate system defined as

x � r cos ϕ; y � r sin ϕ; z � −z 0; (A1)

Fig. 4. Electric-field intensities (a) jEAPMj2 and (b) jEresj2 of the
APM field and of the residual field for the TM S-mode (already shown
in Fig. 2) with particle size D � 100 nm. The APM field is artificially
extended into the deep subwavelength ϕ range of the nanoparticle
where the APM has no definition. (c) and (d) The same as (a) and
(b) but for a larger D � 500 nm. Here the electric radial-components
of the two matched counterpropagating APMs are normalized to have
Er � 1 at r � 7.95 μm and ϕ � 0 for the two particle sizes, so that a
direct comparison of their corresponding residual fields can reflect the
weight of the residual field relative to the matched APM field (or to the
total field).
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where �x; y; z� are the rectangular Cartesian coordinates, and
�r; z 0;ϕ� are the radial, axial, and azimuthal coordinates with
r ∈ �0;�∞�, z 0 ∈ �−∞;�∞�, and ϕ ∈ �−π; π�. The minus of
z 0 in Eq. (A1) is to ensure that �r; z 0;ϕ� forms a right-handed
coordinate system. Based on the well-known form invariance of
Maxwell’s equations under curvilinear coordinate systems [40],
the covariant Maxwell’s equations under �r; z 0;ϕ� have the
same form as those under �x; y; z� but with a transformation
of relative permittivity and permeability and with the covariant
electromagnetic field components as the unknown. For
instance, the scalar relative permittivity εr and permeability
μr are transformed to be tensors εrg ij

ffiffiffigp and μr g ij
ffiffiffigp that re-

present an electrically and magnetically anisotropic medium.
Here gij � P

3
k�1�∂ui∕∂xk��∂uj∕∂xk� is the metric tensor

and g � 1∕ det�gij� with �x1; x2; x3� � �x; y; z� and
�u1; u2; u3� � �r; z 0;ϕ�. From Eq. (A1), one can obtain

gij �
2
4 1 0 0
0 1 0
0 0 r−2

3
5; (A2)

and g � r2. Here note that the gij given by Eq. (A2) is ϕ invari-
ant, and in view that μr � 1 and εr are both ϕ invariant for the
considered microcavity, we then conclude that the relative per-
mittivity and permeability tensors εrg ij

ffiffiffigp and μr g ij
ffiffiffigp in the

covariant Maxwell’s equations are both ϕ invariant. Therefore,
as sketched in Figs. 5(a) and 5(b), the cylindrical cavity under
�x; y; z� is mapped to be an equivalent straight (ϕ invariant)
waveguide under �r; z 0;ϕ�, and the sectorial nanoparticle is
mapped to be a rectangular one.

To model the equivalent straight waveguide in the presence
of a nanoparticle, here we use the aperiodic Fourier modal
method (a-FMM) [41] to solve the covariant Maxwell’s equa-
tions, in which the propagation ϕ direction of APMs is chosen
as the propagation direction of waveguide eigenmodes to be
solved with the a-FMM. Because all spatial variables in the
a-FMM should take values over �−∞;�∞�, we adopt a mirror
symmetry of the electric field vector about the plane r � 0, and
a periodic boundary condition with a period of 2π along the ϕ
direction [54], so that, for such an extended cylindrical coor-
dinate system, r and ϕ can take values over �−∞;�∞�.
Interestingly and importantly, under the extended cylindrical
coordinate system, the cylindrical cavity with a single adsorbed
nanoparticle [as sketched in Fig. 5(a)] is mapped to be an equiv-
alent straight (ϕ invariant) waveguide with adsorption of a peri-
odic array of nanoparticles along the ϕ direction [as sketched in
Fig. 5(b)]. Keeping this equivalent structure in mind, Eq. (2) of
the model in the main text can be understood in a rigorous
sense as a description of the scattering process of the APM
at the nanoparticle centered at ϕ � 0 with the presence of
the particle array, as illustrated in Fig. 5(b). Consequently,
the transmission and reflection coefficients τ and ρ of the
matched APM used in the model can be rigorously defined
by the scattering problem, as sketched in Fig. 5(c), where a
single particle located at ϕ � 0 is illuminated by an up-going
incident APM, which excites a transmitted and a reflected
APMs with coefficients τ and ρ.

Now our task reduces to solving the scattering problem, as
sketched in Fig. 5(c), with the a-FMM [41]. The a-FMM is a
generalization of the well-known rigorous coupled wave analysis

(RCWA) by additionally incorporating perfectly matched layers
(PMLs) to handle the outgoing-wave boundary condition at
infinity. The PMLs are performed as a complex coordinate trans-
formation r � f �r 0� [41,54] that maps the infinite range of the
physical space along r-direction into a finite supercell of numeri-
cal space with r 0 ∈ �−Λ∕2;Λ∕2�. Then an artificial periodic array
of the supercell is built up along the r 0 direction, as sketched in
Fig. 5(d), so that the electromagnetic field can be expanded upon
Fourier basis along the r 0 direction. Then the algorithm of
RCWA for electrically and magnetically anisotropic media
[43] can be applied to this artificial periodic system. In the
a-FMM, the Fourier expansion of the electromagnetic field is in-
serted into the differential Maxwell’s equations under coordinates
�r 0; z 0;ϕ�, and a resultant system of linear ordinary differential
equations for the unknown Fourier coefficients are obtained,
which are then integrated analytically in each ϕ invariant layer
to express the field in terms of the waveguide eigenmodes that
propagate along ϕ direction. For instance, the radial component
Er 0 of the electric field can be expressed as

Er 0 �r 0;ϕ� �
XM
n�−M

Sn�ϕ� exp�inK r 0�; (A3)

Sn�ϕ��
XP
p�1

wn;pfc�p exp�iβpϕ�� c−p exp�iβp�Φ−ϕ��g: (A4)

Fig. 5. (a) Diagram of the cylindrical microcavity with adsorption
of a nanoparticle under the Cartesian coordinate system �x; y; z�. a and
b are the complex amplitude coefficients of the two counterpropagat-
ing APMs matched to the resonant mode considered in the model.
(b) The system is mapped to be an equivalent straight waveguide
with adsorption of a periodic array of nanoparticles along the ϕ direc-
tion under the extended cylindrical coordinate system �r; z 0;ϕ�.
(c) Scattering problem for defining the reflection and transmission
coefficients ρ and τ of the matched APM at the nanoparticle.
(d) Artificial periodic structure for applying the a-FMM to model
the scattering problem shown in (c).
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In Eq. (A3),M is the truncated harmonic number of the Fourier
series, K � 2π∕Λ, and the system is assumed to be z 0 indepen-
dent. In Eq. (A4), P is the number of the solved waveguide
eigenmodes (i.e., APMs), βp � k0neff ;p is the propagation con-
stant of the pth APM and is obtained by solving the eigenvalues
of the coefficient matrix of the resultant linear ordinary differen-
tial equations, wn;p is the corresponding eigenvector and deter-
mines the field distribution of the pth APM, c�p and c−p are
the coefficients of the pth APM that propagates in positive
(counterclockwise) and negative (clockwise) ϕ directions, respec-
tively, andΦ is the thickness of the ϕ invariant layer. Here c�p and
c−p are determined by matching the continuous boundary condi-
tion of tangential electromagnetic field components at interfaces
between adjacent ϕ invariant layers with the use of a stable
scattering-matrix algorithm [55]. By substituting Eq. (A4) into
Eq. (A3), Er 0 is finally expressed as a superposition of counter-
clockwise and clockwise-propagating APMs:

Er 0 �
XP
p�1

c�p E�
p;r 0 �

XP
p�1

c−pE−
p;r 0 ; (A5)

E�
p;r 0 �

" XM
n�−M

wn;p exp�inK r 0�
#
exp�iβpϕ�; (A6)

E−
p;r 0 �

" XM
n�−M

wn;p exp�inK r 0�
#
exp�iβp�Φ − ϕ��; (A7)

where E�
p;r 0 and E−

p;r 0 represent the counterclockwise and clock-
wise-propagating APMs in each ϕ invariant layer, respectively.

To solve the scattering problem as sketched in Fig. 5(c) with
the a-FMM, the structure can be divided into three ϕ invariant
layers, i.e., a middle layer with the nanoparticle sandwiched by
top and bottom semi-infinite layers. The matched APMs
considered in the model can be solved as the waveguide
eigenmodes in the top or bottom semi-infinite layers. Note that
the matched APMs have no definition within the middle ϕ invari-
ant layer of the nanoparticle, as mentioned in the main text
before Eq. (3). Then, by sending an up-going matched
APM from the bottom ϕ invariant layer, the reflection and
transmission coefficients ρ and τ of the matched APMs at
the nanoparticle can be solved as the coefficient c−p of the
matched APM in the bottom layer and c�p of the matched
APM in the top layer [see Eq. (A5)], respectively.

APPENDIX B: SOME DETAILS FOR SOLVING
RESONANT MODES WITH MODEL AND
NUMERICAL EXAMPLES OF HIGH Q-FACTORS
AND BLUESHIFT

We first show the derivation process of the simplified model
[the approximate equality of Eq. (3) in the main text]. As done
in the main text, we define p � − arg�τ� ρ� � 2πm and
q � ln jτ� ρj, and then the equality of Eq. (3) in the main
text becomes

ν � c
4π2

p� iq
Re�neff � � i Im�neff �

� c
4π2

p
Re�neff �

1� i qp
1� i Im�neff �

Re�neff �

� c
4π2

p
Re�neff �

�
1�i

q
p

��
1−i

Im�neff �
Re�neff �

� o
�
Im�neff �
Re�neff �

��

≈
c

4π2
p

Re�neff �

�
1�i

q
p

��
1−i

Im�neff �
Re�neff �

�

� c
4π2

p
Re�neff �

��
1� q

p
Im�neff �
Re�neff �

�
� i

�
q
p
−
Im�neff �
Re�neff �

��

≈
c

4π2
p

Re�neff �

�
1� i

�
q
p
−
Im�neff �
Re�neff �

��
; (B1)

where the two approximate equalities are obtained by neglect-
ing the higher-order small quantities o�Im�neff �∕Re�neff �� and
q Im�neff �∕�pRe�neff �� compared with Im�neff � and q.

As mentioned in the main text, the complex eigenfrequency
νc of the resonant mode can be obtained by solving Eq. (3) in
the main text with the contractive mapping method [46]. The
iteration formula is νN�1 � f �νN � with f �ν� denoting the
right side of Eq. (3). As shown in Figs. 6(a)–6(b), the obtained
series of νN converge fast to νc (with about two or three iter-
ations), and the converged solution is fairly insensitive to the
initial value ν0. This virtue is attributed to the weak depend-
ence of f �ν� on ν that arises from the weak dependence of neff ,

Fig. 6. (a)–(b) Iteration process of solving the complex eigenfre-
quency of the resonant mode (blue and red curves for S-mode and
AS-mode, respectively) in Fig. 2 in the main text, with adsorbed nano-
particle size D � 100 nm. N represents the number of iteration, and
the initial value of iteration is ν0 � 1.9986 × 1014 Hz (corresponding
to wavelength 1.5 μm). The inset in (a) is a magnified view of the
iteration curves. (c)–(f ) jρj, jτj, Re�neff �, and Im�neff � plotted as a
function of frequency ν (the shown frequency range corresponding
to a wavelength range 1.3–1.7 μm).
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ρ, and τ on ν, as confirmed numerically by Figs. 6(c)–6(f ) [note
that the frequency range shown in Figs. 6(c)–6(f ) is 2 orders of
magnitude larger than the frequency shift range shown in
Figs. 2(a) and 3(a) in the main text]. In fact, by assuming
an extreme case that f �ν� is independent of ν, Eq. (3) in
the main text simply provides an analytical solution of the com-
plex eigenfrequency.

To further confirm the validity of the model, we repeat the
calculation of Figs. 2 and 3 in the main text but for resonant
modes with much higher Q-factors (close to or higher than
108). The results are obtained for the resonant modes corre-
sponding to the unperturbed TM1;59 and TE3;100 WGMs sup-
ported by microcavities with radii R � 11 and 20 μm,
respectively (as shown in Fig. 7). Again quantitative agreement
between the prediction of the model and the FEM numerical
results are observed, and the accuracy of the model slightly de-
teriorates with the increase of the nanoparticle size D, similar to
the results in Figs. 2 and 3 in the main text.

As mentioned in the main text, blueshift �δ > 0� may hap-
pen if the refractive index of the adsorbed particle is smaller
than that of its surrounding medium of air, as shown by the
numerical example in Fig. 8. To achieve an understanding, first
we have approximately arg�τ� ρ� ≈ arg�τ� by neglecting the

small quantity of ρ [as shown in Fig. 6(c)]. Then by considering
that the incident APM (with a complex effective index neff ) hops
over the nanoparticle via another APM (with a complex effective
index n 0

eff ) within the azimuthal range Δϕ of the particle, we
have approximately arg�τ� ≈ k0�Re�n 0

eff � − Re�neff ��Δϕ, which
is simply proportional to Δϕ and thus approximately propor-
tional to the nanoparticle size D [as confirmed by the numerical
results of arg�τ� ρ�, as shown in Figs. 2(c), 3(c), 7(c), 8(b), and
8(d)]. For the nanoparticle with a higher (resp. lower) refractive
index than its surrounding medium, naturally we have
Re�n 0

eff � > Re�neff � [resp. Re�n 0
eff � < Re�neff �], which results

in a positive (resp. negative) value of arg�τ� and thus a redshift
(resp. blueshift) of the resonant mode compared with the unper-
turbed WGM [see Eq. (4a) in the main text].

APPENDIX C: CALCULATION OF THE RESIDUAL
FIELD

Here we provide details on the calculation of the residual field
that excludes the field of the APMs matched to the resonant
mode, as shown in Fig. 4 in the main text. The residual field
is defined as Eres � Etot − EAPM, where Etot is the total field
of the resonant mode that can be obtained with the full-wave
FEM calculation, and EAPM � c�E� � c−E− is the field of
the matched APMs that propagate along positive (E� with com-
plex amplitude coefficient c�) and negative (E− with coefficient
c−) azimuthal directions. E� and E− can be calculated with the
a-FMM (as explained in Appendix A). Thus the calculation of
Eres reduces to the extraction of c� and c− from Etot. For that
purpose, it is conceptually clear to consider the equivalent
straight waveguide with adsorption of a periodic array of nano-
particles along the ϕ direction [as sketched in Fig. 5(b)] under
the extended cylindrical coordinate system �r; z 0;ϕ�, rather than
considering the original cylindrical cavity with adsorption of a

Fig. 7. (a)–(f ) The same as Fig. 2 in the main text but for the res-
onant mode corresponding to the unperturbed TM1;59 WGM [with
resonance frequency Re�νc;0� � 1.964712 × 1014 Hz] supported by
the microcavity with radius R � 11 μm. (g)–(h) The same as
Figs. 2(a)–2(b) in the main text but corresponding to TE3;100
WGM with Re�νc;0� � 1.974072 × 1014 Hz and R � 20 μm.

Fig. 8. Blueshift �δ > 0� relative to the unperturbed TM1;42 (a) and
TE1;42 (c) WGMs plotted as a function of nanoparticle size D. The re-
sults are obtained for a refractive index 0.59 of the adsorbed particle that
is lower than the refractive index of the particle’s surrounding medium of
air. All other parameters are the same as those in Fig. 2 of the main text.
(b) and (d) show the negative values of arg�τ� ρ� for different D cor-
responding to (a) and (c), respectively. The blue and red curves show the
results of the S-mode and the AS-mode, respectively.
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single nanoparticle under rectangular coordinates [as sketched in
Fig. 5(a)].

According to the completeness theorem of normal modes
supported by a straight waveguide [40], the total field of the
resonant mode out of the ϕ range of the nanoparticle can
be expressed as a linear superposition of forward (counterclock-
wise) and backward (clockwise) propagating normal modes:

Ψ�r;ϕ� �
X∞
n�1

�cnΨn�r;ϕ� � c−nΨ−n�r;ϕ��; (C1)

where Ψ � �E;H� represents both the electric and the magnetic
vectors, cn and c−n represent the complex amplitude coefficients of
the corresponding forward (Ψn) and backward (Ψ−n) propagating
normal modes, Ψ�n�r;ϕ� � Ψ�n�r;ϕ0� exp��iβn�ϕ − ϕ0��,
and the system is assumed to be z 0 independent. To determine
the mode expansion coefficients c�n in Eq. (C1), one resorts to a
general non-complex-conjugate form of orthogonality relations
for normal modes [40]:

hΨm�r;ϕ�jΨ−n�r;ϕ�i � hΨn�r;ϕ�jΨ−n�r;ϕ�iδm;n;
hΨm�r;ϕ�jΨn�r;ϕ�i � 0; hΨ−m�r;ϕ�jΨ−n�r;ϕ�i � 0; (C2)

where δm;n represents the Kronecker delta, and a bilinear form is
defined as

hΨA�r;ϕ�jΨB�r;ϕ�i

�
Z �∞

0

f�E1;B�r;ϕ�H 2;A�r;ϕ� − E2;B�r;ϕ�H 1;A�r;ϕ��

− �E1;A�r;ϕ�H 2;B�r;ϕ� − E2;A�r;ϕ�H 1;B�r;ϕ��gdr; (C3)

whose value is independent of ϕ [40]. Compared with the
classical complex-conjugate form of orthogonality relations
[40], Eq. (C2) apply to the more general case that the normal
modes possess propagation loss [i.e., Im�βn� > 0], which is al-
ways true for APMs because they are leaky modes [40] and is true
if thewaveguide contains lossymaterial. In Eq. (C3), �E1; E2; E3�
are the covariant components of electric vector E under cylindri-
cal coordinates �r; z 0;ϕ� and are defined by

E � �e1; e2; e3�
2
4 E1

E2

E3

3
5 � �r; z 0;ϕ�

2
4 Er
Ez 0

Eϕ

3
5; (C4)

where �r; z 0;ϕ� � �e1; e2; re3� are unit-length basis vectors
[as sketched in Fig. 5(a)], which are convenient formanipulations.
Then the corresponding components �Er ; Ez 0 ; Ez� and
�E1; E2; E3� are related by E1 � Er, E2 � Ez 0 , E3 � rEϕ.
The components �H 1; H 2; H 3� of magnetic vector H in
Eq. (C3) are defined in a similar way.

Calculating the bilinear forms hΨ−m�r;ϕ�jΨ�r;ϕ�i and
hΨm�r;ϕ�jΨ�r;ϕ�i with Eq. (C1) inserted in and applying
the orthogonality relations in Eq. (C2), one can obtain the
mode expansion coefficients

cm � hΨ−m�r;ϕ�jΨ�r;ϕ�i
hΨ−m�r;ϕ�jΨm�r;ϕ�i

;

c−m � hΨm�r;ϕ�jΨ�r;ϕ�i
hΨm�r;ϕ�jΨ−m�r;ϕ�i

: (C5)

With the use of Eq. (C5), the coefficients c� and c− of the
counterclockwise and clockwise-propagating APMs contained
in their matched resonant mode can be obtained.
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