• Photonics Research
  • Vol. 10, Issue 6, 1472 (2022)
Jiachen Li1, Sigang Yang1, Hongwei Chen1, Xingjun Wang2, Minghua Chen1、*, and Weiwen Zou3
Author Affiliations
  • 1Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • 2State Key Laboratory of Advanced Optical Communications System and Networks, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
  • 3State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1364/PRJ.452631 Cite this Article Set citation alerts
    Jiachen Li, Sigang Yang, Hongwei Chen, Xingjun Wang, Minghua Chen, Weiwen Zou. Fully integrated hybrid microwave photonic receiver[J]. Photonics Research, 2022, 10(6): 1472 Copy Citation Text show less
    References

    [1] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [2] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314-335(2009).

    [3] S. J. Fandiño, P. Muñoz, D. Domenech, J. Capmany. A monolithic integrated photonic microwave filter. Nat. Photonics, 11, 124-129(2017).

    [4] Y. Liu, A. Choudhary, D. Marpaung, B. J. Eggleton. Integrated microwave photonic filters. Adv. Opt. Photon., 12, 485-555(2020).

    [5] Y. Tao, H. Shu, X. Wang, M. Jin, Z. Tao, F. Yang, J. Shi, J. Qin. Hybrid-integrated high-performance microwave photonic filter with switchable response. Photon. Res., 9, 1569-1580(2021).

    [6] W. Zhang, J. Yao. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter. Opt. Lett., 43, 3622-3625(2018).

    [7] Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, D. Marpaung. All-optimized integrated RF photonic notch filter. Opt. Lett., 42, 4631-4634(2017).

    [8] A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, F. X. Kärtner. Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express, 20, 4454-4469(2012).

    [9] S. Xu, X. Zou, B. Ma, J. Chen, L. Yu, W. Zou. Deep-learning-powered photonic analog-to-digital conversion. Light Sci. Appl., 8, 66(2019).

    [10] J. Li, S. Yang, H. Chen, M. Chen. Hybrid microwave photonic receiver based on integrated tunable bandpass filters. Opt. Express, 29, 11084-11093(2021).

    [11] A. C. Paolella, R. DeSalvo, C. Middleton, S. Ayotte, M. Morin, G. Bilodeau, L.-P. Perron-Houle, F. Costin, A. Babin, G. Brochu, J. Blanchet-Létourneau, C.-A. Davidson, D. D’Amato, E. Girard-Deschênes, P. Chrétien, M. Laplante, M. Drolet. Hybrid integration of RF photonic systems. J. Lightwave Technol., 36, 5067-5073(2018).

    [12] H. Yu, M. Chen, Q. Guo, M. Hoekman, H. Chen, A. Leinse, R. G. Heideman, R. Mateman, S. Yang, S. Xie. All-optical full-band RF receiver based on an integrated ultra-high-Q bandpass filter. J. Lightwave Technol., 34, 701-706(2016).

    [13] C. Yin, J. Li, L. Shu, Z. Yu, F. Yin, Y. Zhou, Y. Dai, K. Xu. Broadband lower-IF RF receiver based on microwave photonic mixer and Kramers-Kronig detection. Opt. Express, 26, 26400-26410(2018).

    [14] W. Chen, D. Zhu, J. Liu, S. Pan. Multi-band RF transceiver based on the polarization multiplexed photonic LOs and mixers. IEEE J. Sel. Top. Quantum Electron., 27, 7601009(2021).

    [15] M. Chen, H. Yu, B. Yang, Y. Li, H. Chen, S. Xie. A silicon integrated microwave-photonic transceiver. Optical Fiber Communication Conference, W4B.3(2017).

    [16] F. Falconi, S. Melo, F. Scotti, M. N. Malik, M. Scaffardi, C. Porzi, L. Ansalone, P. Ghelfi, A. Bogoni. A combined radar & lidar system based on integrated photonics in silicon-on-insulator. J. Lightwave Technol., 39, 17-23(2021).

    [17] S. Li, Z. Cui, X. Ye, J. Feng, Y. Yang, Z. He, R. Cong, D. Zhu, F. Zhang, S. Pan. Chip-based microwave-photonic radar for high-resolution imaging. Laser Photon. Rev., 14, 1900239(2020).

    [18] J. Liu, E. Lucas, S. A. Raja, J. He, J. Riemensberger, N. R. Wang, M. Karpov, H. Guo, R. Bouchand, J. T. Kippenberg. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [19] Y. K. Chembo, D. Brunner, M. Jacquot, L. Larger. Optoelectronic oscillators with time-delayed feedback. Rev. Mod. Phys., 91, 035006(2019).

    [20] J. Tang, T. Hao, W. Li, D. Domenech, R. B. Nos, P. M. Noz, N. Zhu, J. Capmany, M. Li. Integrated optoelectronic oscillator. Opt. Express, 26, 12257-12265(2018).

    [21] P. Zhou, R. Zhang, N. Li, Z. Jiang, S. Pan. An RF-source-free microwave photonic radar with an optically injected semiconductor laser for high-resolution detection and imaging(2021).

    [22] X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, J. Yao. Photonics for microwave measurements. Laser Photon. Rev., 10, 711-734(2016).

    [23] S. Pan, J. Yao. Photonics-based broadband microwave measurement. J. Lightwave Technol., 35, 3498-3513(2017).

    [24] Y. He, K. G. H. Baldwin, B. J. Orr, R. B. Warrington, M. J. Wouters, A. N. Luiten, P. Mirtschin, T. Tzioumis, C. Phillips, J. Stevens, B. Lennon, S. Munting, G. Aben, T. Newlands, T. Rayner. Long-distance telecom-fiber transfer of a radio-frequency reference for radio astronomy. Optica, 5, 138-146(2018).

    [25] C. Lim, A. Nirmalathas. Radio-over-fiber technology: present and future. J. Lightwave Technol., 39, 881-888(2021).

    [26] C. Zhu, L. Lu, W. Shan, W. Xu, G. Zhou, L. Zhou, J. Chen. Silicon integrated microwave photonic beamformer. Optica, 7, 1162-1170(2020).

    [27] C. Tsokos, E. Andrianopoulos, A. Raptakis, N. K. Lyras, L. Gounaridis, P. Groumas, R. B. Timens, I. Visscher, R. Grootjans, L. S. Wefers, D. Geskus, E. Klein, H. Avramopoulos, R. Heideman, C. Kouloumentas, C. G. H. Roeloffzen. True time delay optical beamforming network based on hybrid InP-silicon nitride integration. J. Lightwave Technol., 39, 5845-5854(2021).

    [28] X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source Invited. Photon. Res., 6, B30-B36(2018).

    [29] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [30] D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany. Integrated microwave photonics. Laser Photon. Rev., 7, 506-538(2013).

    [31] V. Rustichelli, C. Calò, F. Lemaitre, S. Andreou, N. Michel, F. Pommereau, H. Ambrosius, K. Williams. Monolithic integration of buried-heterostructures in a generic integrated photonic foundry process. IEEE J. Sel. Top. Quantum Electron., 25, 6100808(2019).

    [32] G. E. Hoefler, Y. Zhou, M. Anagnosti, A. Bhardwaj, P. Abolghasem, A. James, S. Luna, P. Debackere, A. Dentai, T. Vallaitis, P. Liu, M. Missey, S. Corzine, P. Evans, V. Lal, M. Ziari, D. Welch, F. Kish, J. S. Suelzer, P. S. Devgan, N. G. Usechak. Foundry development of system-on-chip InP-based photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 6100317(2019).

    [33] P. Muñoz, P. W. L. van Dijk, D. Geuzebroek, M. Geiselmann, C. Domínguez, A. Stassen, J. D. Doménech, M. Zervas, A. Leinse, C. G. H. Roeloffzen, B. Gargallo, R. Baños, J. Fernàndez, G. M. Cabanes, L. A. Bru, D. Pastor. Foundry developments toward silicon nitride photonics from visible to the mid-infrared. IEEE J. Sel. Top. Quantum Electron., 25, 8200513(2019).

    [34] C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, K.-J. Boller. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron., 24, 4400321(2018).

    [35] K. Giewont, K. Nummy, F. A. Anderson, J. Ayala, T. Barwicz, Y. Bian, K. K. Dezfulian, D. M. Gill, T. Houghton, S. Hu, B. Peng, M. Rakowski, S. Rauch, J. C. Rosenberg, A. Sahin, I. Stobert, A. Stricker. 300-mm monolithic silicon photonics foundry technology. IEEE J. Sel. Top. Quantum Electron., 25, 8200611(2019).

    [36] T. Aalto, M. Cherchi, M. Harjanne, S. Bhat, P. Heimala, F. Sun, M. Kapulainen, T. Hassinen, T. Vehmas. Open-access 3-μm SOI waveguide platform for dense photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 8201109(2019).

    [37] S. Y. Siew, B. Li, F. Gao, H. Y. Zheng, W. Zhang, P. Guo, S. W. Xie, A. Song, B. Dong, L. W. Luo, C. Li, X. Luo, G.-Q. Lo. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    [38] W. M. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, O. R. Behunin, T. P. Rakich, D. K. Nelson, J. D. Blumenthal. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [39] J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, T. J. Kippenberg. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [40] C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T. J. Kippenberg, J. E. Bowers. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [41] B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, N. R. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, J. T. Kippenberg, K. Vahala, E. J. Bowers. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [42] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [43] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [44] Y. Fan, A. van Rees, P. J. M. van der Slot, J. Mak, R. M. Oldenbeuving, M. Hoekman, D. Geskus, C. G. H. Roeloffzen, K.-J. Boller. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express, 28, 21713-21728(2020).

    [45] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, A. M. Leal, L. Wu, A. Feshali, M. Paniccia, J. K. Vahala, E. J. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [46] J. Li, B. Zhang, S. Yang, H. Chen, M. Chen. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector. Photon. Res., 9, 558-566(2021).

    [47] C. Xiang, J. Guo, W. Jin, J. Peters, W. Xie, L. Chang, B. Shen, H. Wang, Q.-F. Yang, L. Wu, D. Kinghorn, M. Paniccia, J. K. Vahala, A. P. Morton, E. J. Bowers. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun., 12, 6650(2021).

    [48] B. Li, W. Jin, L. Wu, L. Chang, H. Wang, B. Shen, Z. Yuan, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Reaching fiber-laser coherence in integrated photonics. Opt. Lett., 46, 5201-5204(2021).

    [49] Q. Wilmart, S. Brision, J.-M. Hartmann, A. Myko, K. Ribaud, C. Petit-Etienne, L. Youssef, D. Fowler, B. Charbonnier, C. Sciancalepore, E. Pargon, S. Bernabé, B. Szelag. A complete Si photonics platform embedding ultra-low loss waveguides for O- and C-band. J. Lightwave Technol., 39, 532-538(2021).

    [50] A. Rahim, A. Hermans, B. Wohlfeil, D. Petousi, B. Kuyken, D. V. Thourhout, R. G. Baets. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photon., 3, 024003(2021).

    [51] T. G. Reed, G. Mashanovich, Y. F. Gardes, J. D. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [52] J. Michel, J. Liu, C. L. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics, 4, 527-534(2010).

    [53] D. Liang, E. J. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [54] Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, J. E. Bowers. 1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si. Laser Photon. Rev., 14, 2000037(2020).

    [55] Y. Wan, C. Xiang, J. Guo, R. Koscica, M. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, J. E. Bowers. High speed evanescent quantum-dot lasers on Si. Laser Photon. Rev., 15, 2100057(2021).

    [56] D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, J. E. Bowers. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica, 6, 745-752(2019).

    [57] J. Zhang, G. Muliuk, J. Juvert, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, G. Roelkens. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photon., 4, 110803(2019).

    [58] B. Haq, S. Kumari, K. Van Gasse, J. Zhang, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens. Micro-transfer-printed III-V-on-silicon C-band semiconductor optical amplifiers. Laser Photon. Rev., 14, 1900364(2020).

    [59] M. Theurer, M. Moehrle, A. Sigmund, K.-O. Velthaus, R. M. Oldenbeuving, L. Wevers, F. M. Postma, R. Mateman, F. Schreuder, D. Geskus, K. Wörhoff, R. Dekker, R. G. Heideman, M. Schell. Flip-chip integration of InP to SiN photonic integrated circuits. J. Lightwave Technol., 38, 2630-2636(2020).

    [60] S. Lin, X. Zheng, J. Yao, S. S. Djordjevic, J. E. Cunningham, J.-H. Lee, I. Shubin, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, K. Raj, A. V. Krishnamoorthy. Efficient, tunable flip-chip-integrated III-V/Si hybrid external-cavity laser array. Opt. Express, 24, 21454-21462(2016).

    [61] M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, C. Koos. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876-883(2018).

    [62] Y. Gao, C. Bolle, Y. Low, R. Papazian, M. Cappuzzo, B. Keller, F. Pardo, M. P. Earnshaw. Hybrid integration with efficient ball lens-based optical coupling for compact WDM transmitters. IEEE Photon. Technol. Lett., 28, 2549-2552(2016).

    [63] J. Zhou, J. Wang, L. Zhu, Q. Zhang. High baud rate all-silicon photonics carrier depletion modulators. J. Lightwave Technol., 38, 272-281(2020).

    [64] T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong. Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization. IEEE J. Sel. Top. Quantum Electron., 16, 307-315(2010).

    [65] L. Jia, C. Li, T.-Y. Liow, G.-Q. Lo. Efficient suspended coupler with loss less than −1.4 dB between Si-photonic waveguide and cleaved single mode fiber. J. Lightwave Technol., 36, 239-244(2018).

    [66] Q. Deng, L. Liu, X. Li, Z. Zhou. Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference. Opt. Lett., 39, 5590-5593(2014).

    [67] M. Harfouche, D. Kim, H. Wang, C. T. Santis, Z. Zhang, H. Chen, N. Satyan, G. Rakuljic, A. Yariv. Kicking the habit/semiconductor lasers without isolators. Opt. Express, 28, 36466-36475(2020).

    [68] P. Dong, L. Chen, Y. K. Chen. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express, 20, 6163-6169(2012).

    [69] C. K. Madsen, J. Zhao. Optical Filter Design and Analysis: A Signal Processing Approach(1999).

    [70] D. Humphreys. Integrated-optic system for high-speed photodetector bandwidth measurements. Electron. Lett., 25, 1555-1557(1989).

    [71] Y. Li, Y. Zhang, H. Chen, S. Yang, M. Chen. Tunable self-injected Fabry–Perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. J. Lightwave Technol., 36, 3269-3274(2018).

    [72] Z. Tang, S. Pan. A reconfigurable photonic microwave mixer using a 90° optical hybrid. IEEE Trans. Microw. Theory Tech., 64, 3017-3025(2016).

    [73] J. Zhang, W. Jiang, Y. Yu, X. Zhang. Photonics-based simultaneous measurement of distance and velocity using multi-band LFM microwave signals with opposite chirps. Opt. Express, 27, 27580-27591(2019).

    [74] H. Zhang, M. Li, Y. Zhang, D. Zhang, Q. Liao, J. He, S. Hu, B. Zhang, L. Wang, X. Xiao, N. Qi, S. Yu. 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photon. Res., 8, 1776-1782(2020).

    [75] M. Li, L. Wang, X. Li, X. Xiao, S. Yu. Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications. Photon. Res., 6, 109-116(2018).

    [76] L. Virot, D. Benedikovic, B. Szelag, C. Alonso-Ramos, B. Karakus, J.-M. Hartmann, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, L. Vivien. Integrated waveguide pin photodiodes exploiting lateral Si/Ge/Si heterojunction. Opt. Express, 25, 19487-19496(2017).

    [77] D. Pérez, I. Gasulla, P. D. Mahapatra, J. Capmany. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photon., 12, 709-786(2020).

    [78] J. Li, S. Yang, H. Chen, M. Chen. Reconfigurable rectangular filter with continuously tunable bandwidth and wavelength. IEEE Photon. J., 12, 6601309(2020).

    Jiachen Li, Sigang Yang, Hongwei Chen, Xingjun Wang, Minghua Chen, Weiwen Zou. Fully integrated hybrid microwave photonic receiver[J]. Photonics Research, 2022, 10(6): 1472
    Download Citation