• Acta Optica Sinica
  • Vol. 41, Issue 1, 0127001 (2021)
Tiancai Zhang1、2、*, Wei Wu1、2, Pengfei Yang1、2、3, Gang Li1、2、**, and Pengfei Zhang1、2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 3Institute of Big Data Science and Industry, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/AOS202141.0127001 Cite this Article Set citation alerts
    Tiancai Zhang, Wei Wu, Pengfei Yang, Gang Li, Pengfei Zhang. High-Finesse Micro-Optical Fabry-Perot Cavity and Its Applications in Strongly Coupled Cavity Quantum Electrodynamics[J]. Acta Optica Sinica, 2021, 41(1): 0127001 Copy Citation Text show less
    References

    [1] Hernández G[M]. Fabry-Perot interferometers(1988).

    [2] Day T, Gustafson E K, Byer R L. Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd∶YAG lasers locked to a Fabry-Perot interferometer[J]. IEEE Journal of Quantum Electronics, 28, 1106-1117(1992). http://ieeexplore.ieee.org/document/135234

    [3] Wei T, Han Y K, Tsai H L et al. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser[J]. Optics Letters, 33, 536-538(2008).

    [4] Wei F, Yang F, Zhang X et al. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity[J]. Optics Express, 24, 17406-17415(2016).

    [5] Guo Y S, Jiang S, Chen X et al. Using a Fabry-Perot cavity to augment the enhancement factor for surface-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry C, 122, 14865-14871(2018).

    [6] Drouin B J, Tang A, Schlecht E et al. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy[J]. The Journal of Chemical Physics, 145, 074201(2016). http://scitation.aip.org/content/aip/journal/jcp/145/7/10.1063/1.4961020

    [7] Monteiro C, Silva S, Frazão O. Hollow microsphere Fabry-Perot cavity for sensing applications[J]. IEEE Photonics Technology Letters, 29, 1229-1232(2017). http://d.wanfangdata.com.cn/periodical/0986863880d3c205227e235fa443a7e5

    [8] Bitarafan M H. DeCorby R G. On-chip high-finesse Fabry-Perot microcavities for optical sensing and quantum information[J]. Sensors, 17, 1748(2017).

    [9] Jewell S A, Hendry E, Isaac T H et al. Tuneable Fabry-Perot etalon for terahertz radiation[J]. New Journal of Physics, 10, 033012(2008). http://adsabs.harvard.edu/abs/2008NJPh...10c3012J

    [10] Jewell J L, Rushford M C, Gibbs H M. Use of a single nonlinear Fabry-Perot etalon as optical logic gates[J]. Applied Physics Letters, 44, 172-174(1984). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4852521

    [11] Guérin N, Enoch S, Tayeb G et al. A metallic Fabry-Perot directive antenna[J]. IEEE Transactions on Antennas and Propagation, 54, 220-224(2006). http://ieeexplore.ieee.org/document/1573759

    [12] Ju J, Choi J. Broadband high-gain Fabry-Perot cavity antenna with back radiation reduction[J]. Microwave and Optical Technology Letters, 55, 975-978(2013). http://onlinelibrary.wiley.com/doi/full/10.1002/mop.27474

    [13] Corbitt T, Ottaway D, Innerhofer E et al. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity[J]. Physical Review A, 74, 021802(2006). http://dx.doi.org/10.1103/physreva.74.021802

    [14] Lawall J R. Fabry-Perot metrology for displacements up to 50 mm[J]. Journal of the Optical Society of America A, 22, 2786-2798(2005).

    [15] Jones R J, Diels J C. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis[J]. Physical Review Letters, 86, 3288(2001). http://www.ncbi.nlm.nih.gov/pubmed/11327952

    [16] Aoki T, Dayan B, Wilcut E et al. Observation of strong coupling between one atom and a monolithic microresonator[J]. Nature, 443, 671-674(2006). http://www.nature.com/articles/nature05147

    [17] Gröblacher S, Hammerer K, Vanner M R et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field[J]. Nature, 460, 724-727(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000020000007000041000001&idtype=cvips&gifs=Yes

    [18] Yokoyama H. Physics and device applications of optical microcavities[J]. Science, 256, 66-70(1992). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9204272380&site=ehost-live

    [19] Raimond J M, Haroche S[M]. Exploring the quantum: atoms, cavities, and photons, 231-278(2006).

    [20] van Enk S J, Cirac J I, Zoller P. Photonic channels for quantum communication[J]. Science, 279, 205-208(1998). http://www.ncbi.nlm.nih.gov/pubmed/9422688

    [21] Mabuchi H, Doherty A C. Cavity quantum electrodynamics: coherence in context[J]. Science, 298, 1372-1377(2002). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=8842204&site=ehost-live

    [22] Kimble H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).

    [23] Thompson R J, Rempe G, Kimble H J et al. Observation of normal-mode splitting for an atom in an optical cavity[J]. Physical Review Letters, 68, 1132-1135(1992).

    [24] Mckeever J, Boca A, Boozer A D et al. Deterministic generation of single photons from one atom trapped in a cavity[J]. Science, 303, 1992-1994(2004).

    [25] Brennecke F, Donner T, Ritter S et al. Cavity QED with a Bose-Einstein condensate[J]. Nature, 450, 268-271(2007). http://meetings.aps.org/Meeting/DAMOP08/Event/85437

    [26] Zoller P, Beth T, Binosi D et al. Quantum information processing and communication: strategic report on current status, visions and goals for research in Europe[J]. European Physical Journal D, 36, 203-228(2005). http://www.researchgate.net/publication/237417709_Quantum_information_processing_and_communication_Strategic_report_on_current_status_visions_and_goals_for_research_in_Europe

    [27] Weber B, Specht H P, Müller T et al. Photon-photon entanglement with a single trapped atom[J]. Physical Review Letters, 102, 030501(2009).

    [28] Rauschenbeutel A, Nogues G, Osnaghi S et al. Coherent operation of a tunable quantum phase gate in cavity QED[J]. Physical Review Letters, 83, 5166-5169(1999). http://nsr.oxfordjournals.org/external-ref?access_num=10.1103/PhysRevLett.83.5166&link_type=DOI

    [29] Banaszek K, Demkowicz-Dobrzański R, Walmsley I A. Quantum states made to measure[J]. Nature Photonics, 3, 673-676(2009). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=45477854&site=ehost-live

    [30] Chen Z L, Bohnet J G, Sankar S R et al. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting[J]. Physical Review Letters, 106, 133601(2011).

    [31] Rempe G, Thompson R J, Kimble H J et al. Measurement of ultralow losses in an optical interferometer[J]. Optics Letters, 17, 363-365(1992).

    [32] Hood C J. The atom-cavity microscope: single atoms bound in orbit by single photons[J]. Science, 287, 1447-1453(2000). http://www.ncbi.nlm.nih.gov/pubmed/10688786?dopt=Abstract

    [33] McKeever J, Boca A, Boozer A D et al. Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 425, 268-271(2003).

    [34] Keller M, Lange B, Hayasaka K et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system[J]. Nature, 431, 1075-1078(2004). http://www.tandfonline.com/servlet/linkout?suffix=CIT0001&dbid=8&doi=10.1080%2F09500340.2017.1406158&key=15510142

    [35] Pinkse P W, Fischer T, Maunz P et al. Trapping an atom with single photons[J]. Nature, 404, 365-368(2000). http://www.nature.com/articles/35006006

    [36] Maunz P, Puppe T, Schuster I et al. Cavity cooling of a single atom[J]. Nature, 428, 50-52(2004).

    [37] Schuster I, Kubanek A, Fuhrmanek A et al. Nonlinear spectroscopy of photons bound to one atom[J]. Nature Physics, 4, 382-385(2008). http://www.nature.com/articles/nphys940

    [38] Kubanek A, Koch M, Sames C et al. Photon-by-photon feedback control of a single-atom trajectory[J]. Nature, 462, 898-901(2009).

    [39] Ourjoumtsev A, Kubanek A, Koch M et al. Observation of squeezed light from one atom excited with two photons[J]. Nature, 474, 623-626(2011).

    [40] Hamsen C, Tolazzi K N, Wilk T et al. Strong coupling between photons of two light fields mediated by one atom[J]. Nature Physics, 14, 885-889(2018).

    [41] Terraciano M L, Olson Knell R, Norris D G et al. Photon burst detection of single atoms in an optical cavity[J]. Nature Physics, 5, 480-484(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT06000001000002000071000001&idtype=cvips&gifs=Yes

    [42] Baumann K, Guerlin C, Brennecke F et al. Dicke quantum phase transition with a superfluid gas in an optical cavity[J]. Nature, 464, 1301-1306(2010). http://dx.doi.org/10.1038/nature09009

    [43] Purdy T P, Brooks D W, Botter T et al. Tunable cavity optomechanics with ultracold atoms[J]. Physical Review Letters, 105, 133602(2010). http://europepmc.org/abstract/MED/21230775

    [44] Stute A, Casabone B, Schindler P et al. Tunable ion-photon entanglement in an optical cavity[J]. Nature, 485, 482-485(2012).

    [45] Takahashi H, Kassa E, Christoforou C et al. Strong coupling of a single ion to an optical cavity[J]. Physical Review Letters, 124, 013602(2020). http://arxiv.org/abs/1808.04031

    [46] Tong L M, Zi F, Guo X et al. Optical microfibers and nanofibers: a tutorial[J]. Optics Communications, 285, 4641-4647(2012).

    [47] Tong L M, Gattass R R, Ashcom J B et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 426, 816-819(2003).

    [48] Zhang L, Lou J Y, Tong L M. Micro/nanofiber optical sensors[J]. Photonic Sensors, 1, 31-42(2011). http://www.opticsjournal.net/Articles/Abstract?aid=OJ130410000034Zw3y6B

    [49] Cui J M, Zhou K, Zhao M S et al. Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings[J]. Applied Physics Letters, 112, 171105(2018).

    [50] Zhang T T, Zhou C H, Wang W J et al. Generation of low-threshold optofluidic lasers in a stable Fabry-Pérot microcavity[J]. Optics & Laser Technology, 91, 108-111(2017). http://www.sciencedirect.com/science/article/pii/S0030399215306381

    [51] Dong C H, Shen Z, Zou C L et al. Brillouin-scattering-induced transparency and non-reciprocal light storage[J]. Nature Communications, 6, 6193(2015).

    [52] Shen Z, Zhang Y L, Chen Y et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics, 10, 657-661(2016).

    [53] Shen Z, Zhang Y L, Chen Y et al. Reconfigurable optomechanical circulator and directional amplifier[J]. Nature Communications, 9, 1797(2018). http://www.nature.com/articles/s41467-018-04187-8

    [54] Wu X W, Zou C L, Wei W et al. Photoluminescence from site-selected coupling between quantum dots and microtoroid cavities[J]. Chinese Optics Letters, 8, 709-712(2010). http://www.opticsjournal.net/Articles/Abstract?aid=OJ100719000022B8DaGd

    [55] Chang L, Jiang X S, Hua S Y et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators[J]. Nature Photonics, 8, 524-529(2014). http://www.nature.com/articles/nphoton.2014.133

    [56] Tang S J, Li B B, Xiao Y F. Optical sensing with whispering-gallery microcavities[J]. Physics, 48, 137-147(2019).

    [57] Peng B, Özdemir Ş K, Lei F et al. Parity-time-symmetric whispering-gallery microcavities[J]. Nature Physics, 10, 394-398(2014). http://www.nature.com/nphys/journal/v10/n5/full/nphys2927.html?WT.ec_id=NPHYS-201405

    [58] Lin J T, Yao N, Hao Z Z et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 122, 173903(2019).

    [59] Kong Y F, Bo F, Wang W W et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 32, 1806452(2020). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113687253.html

    [60] Yang Y D, Tang M, Wang F L et al. Whispering-gallery mode hexagonal micro-/nanocavity lasers[J]. Photonics Research, 7, 594-607(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ190508000072dKgMjP

    [61] Chen W, Zhang S P, Deng Q et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons[J]. Nature Communications, 9, 801(2018). http://www.nature.com/articles/s41467-018-03227-7/

    [62] Li L P, Liu T, Li G et al. Measurement of ultra-low losses in optical supercavity[J]. Acta Physica Sinica, 53, 1401-1405(2004).

    [63] Li G, Zhang Y, Li Y et al. Precision measurement of ultralow losses of an asymmetric optical microcavity[J]. Applied Optics, 45, 7628-7631(2006).

    [64] Zhang P F, Guo Y Q, Li Z H et al. Elimination of the degenerate trajectory of a single atom strongly coupled to a tilted TEM10 cavity mode[J]. Physical Review A, 83, 031804(2011).

    [65] Wen R J, Du J J, Li W F et al. Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms[J]. Acta Physica Sinica, 63, 244203(2014).

    [66] Yang P F, He H, Wang Z H et al. Cavity enhanced measurement of trap frequency in an optical dipole trap[J]. Chinese Physics B, 28, 043701(2019).

    [67] Yang P F, Xia X W, He H et al. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity[J]. Physical Review Letters, 123, 233604(2019).

    [68] Zhang P F, Zhang Y C, Li G et al. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system[J]. Chinese Physics Letters, 28, 044203(2011). http://www.oalib.com/paper/1529476

    [69] Du J J, Li W F, Wen R J et al. Precision measurement of single atoms strongly coupled to the higher-order transverse modes of a high-finesse optical cavity[J]. Applied Physics Letters, 103, 083117(2013).

    [70] Li Z G, Zhang Y C, Li G et al. -12-23[P]. accurately measuring ultra-high reflectivity lens: CN100573082C.(2009).

    [71] Hood C J, Kimble H J, Ye J. Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity[J]. Physical Review A, 64, 033804(2001). http://prola.aps.org/abstract/PRA/v64/i3/e033804

    [72] Zhang P F, Li G. -11-21[P]. Zhang T C. Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity: CN102427200A.(2012).

    [73] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983). http://www.springerlink.com/content/rgg2823656435593/

    [74] Lindsay B G, Smith K A, Dunning F B. Control of long-term output frequency drift in commercial dye lasers[J]. Review of Scientific Instruments, 62, 1656-1657(1991). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9784672&site=ehost-live

    [75] Du J J, Li G, Li W F, locking method:CN102520516B[P] et al. -06-26(2013).

    [76] Li G, Zhang P F. -06-14[P]. Zhang T C. An optical reference cavity with self-compensation for temperature drift: CN109888609.(2019).

    [77] Zhang P F, Li G, Zhang Y C et al. Light-induced atom desorption for cesium loading of a magneto-optical trap: analysis and experimental investigations[J]. Physical Review A, 80, 053420(2009). http://adsabs.harvard.edu/abs/2009PhRvA..80e3420Z

    [78] Phillips W D. Nobel Lecture: laser cooling and trapping of neutral atoms[J]. Reviews of Modern Physics, 70, 721(1998).

    [79] Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 6, 2023-2045(1989).

    [80] Li G, Li L P, Du Z J et al. Ultra-low mean-photon-number measurement with balanced optical heterodyne detection[J]. Chinese Physics Letters, 21, 671-674(2004).

    [81] Li W F, Du J J, Wen R J et al. Temperature measurement of cold atoms using single-atom transits and Monte Carlo simulation in a strongly coupled atom-cavity system[J]. Applied Physics Letters, 104, 113102(2014). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6774825

    [82] Du J J, Li W F, Wen R J et al. Experimental investigation of the statistical distribution of single atoms in cavity quantum electrodynamics[J]. Laser Physics Letters, 12, 065501(2015). http://adsabs.harvard.edu/abs/2015LaPhL..12f5501D

    [83] Yang P F, Li M, Han X et al. -11-23)[2020-03-15], org/abs/1911, 10300(2019). https://arxiv.

    [84] Wang Z H, Tian Y L, Yang C et al. Experimental test of Bohr's complementarity principle with single neutral atoms[J]. Physical Review A, 94, 062124(2016). http://dx.doi.org/10.1103/physreva.94.062124

    [85] Tian Y L, Wang Z H, Zhang P F et al. Measurement of complete and continuous Wigner functions for discrete atomic systems[J]. Physical Review A, 97, 013840(2018). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.013840

    [86] Li G, Tian Y L, Wu W et al. Triply magic conditions for microwave transition of optically trapped alkali-metal atoms[J]. Physical Review Letters, 123, 253602(2019). http://www.ncbi.nlm.nih.gov/pubmed/31922798

    [87] Nölleke C, Neuzner A, Reiserer A et al. Efficient teleportation between remote single-atom quantum memories[J]. Physical Review Letters, 110, 140403(2013). http://europepmc.org/abstract/MED/25166964

    [88] Kato S, Német N, Senga K et al. Observation of dressed states of distant atoms with delocalized photons in coupled-cavities quantum electrodynamics[J]. Nature Communications, 10, 1160(2019).

    [89] Okada M, Serikawa T, Dannatt J et al. Extending the piezoelectric transducer bandwidth of an optical interferometer by suppressing resonance using a high dimensional IIR filter implemented on an FPGA[J]. Review of Scientific Instruments, 91, 055102(2020).

    [90] Guo Y Q, Wang L J, Wang Y et al. High-order photon correlations through double Hanbury Brown-Twiss measurements[J]. Journal of Optics, 22, 095202(2020). http://iopscience.iop.org/article/10.1088/2040-8986/aba3b6

    [91] Guo Y Q, Yang R C, Li G et al. Nonclassicality characterization in photon statistics based on binary-response single-photon detection[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 44, 205502(2011). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011JPhB...44t5502G&db_key=PHY&link_type=EJOURNAL

    [92] Cao J K, Yang P F, Tian Y L et al. Measurement of high-order coherence of light field based on intensified charge-coupled device[J]. Acta Optica Sinica, 39, 0712008(2019).

    [93] Brown K R, Dani K M. Stamper-Kurn D M, et al. Deterministic optical Fock-state generation[J]. Physical Review A, 67, 043818(2003).

    [94] Yang R C, Li G, Li J et al. Atomic N00N state generation in distant cavities by virtual excitations[J]. Chinese Physics B, 20, 060302(2011).

    [95] Yang R C, Li G, Zhang T C. Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics[J]. Quantum Information Processing, 12, 493-504(2013).

    [96] Li G, Zhang P F, Zhang T C. Entanglement of remote material qubits through nonexciting interaction with single photons[J]. Physical Review A, 97, 053808(2018). http://www.researchgate.net/publication/324999920_Entanglement_of_remote_material_qubits_through_nonexciting_interaction_with_single_photons

    [97] Yang B, Chen Y Y, Zheng Y G et al. Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases[J]. Physical Review Letters, 119, 165701(2017). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.165701

    [98] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [99] Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators[J]. Optics Letters, 21, 453-455(1996).

    [100] Dong C H, He L, Xiao Y F et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing[J]. Applied Physics Letters, 94, 231119(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5130076

    [101] Kiraz A, Michler P, Becher C et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure[J]. Applied Physics Letters, 78, 3932-3934(2001). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4896880

    [102] Peng B, Özdemir Ş K, Chen W et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities[J]. Nature communications, 5, 5082(2014). http://www.ncbi.nlm.nih.gov/pubmed/25342088

    [103] Zhu J G, Ozdemir S K, Xiao Y F et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator[J]. Nature Photonics, 4, 46-49(2010). http://connection.ebscohost.com/c/correction-notices/47806777/on-chip-single-nanoparticle-detection-sizing-by-mode-splitting-ultrahigh-q-microresonator

    [104] Armani D K, Kippenberg T J, Spillane S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).

    [105] Vu kovi J, Lon ar M, Mabuchi H et al. Design of photonic crystal microcavities for cavity QED[J]. Physical Review E, 65, 016608(2001).

    [106] Gu Y, Wang L, Ren P et al. Intrinsic quantum beats of atomic populations and their nanoscale realization through resonant plasmonic antenna[J]. Plasmonics, 7, 33-38(2012). http://d.wanfangdata.com.cn/periodical/d9326f9f2520a00bf3731416b5386560

    [107] Ren J J, Gu Y, Zhao D X et al. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection[J]. Physical Review Letters, 118, 073604(2017). http://www.ncbi.nlm.nih.gov/pubmed/28256881

    [108] Zhang F, Ren J, Shan L et al. Chiral cavity quantum electrodynamics with coupled nanophotonic structures[J]. Physical Review A, 100, 053841(2019). http://www.researchgate.net/publication/337382653_Chiral_cavity_quantum_electrodynamics_with_coupled_nanophotonic_structures

    [109] Wang X, Song L J, Wang C X et al. Optimization of a magneto-optic trap using nanofibers[J]. Chinese Physics B, 28, 073701(2019). http://cpb.iphy.ac.cn/CN/abstract/abstract74293.shtml

    [110] Song L J, Zhang P F, Li G et al. -03-25[P]. method for nondestructively measuring microsphere diameter uniformity: CN110333170A.(2020).

    [111] Zhang P F, Wang X, Song L J et al. Characterization of scattering losses in tapered optical fibers perturbed by a microfiber tip[J]. Journal of the Optical Society of America B, 37, 1401-1405(2020). http://www.researchgate.net/publication/340020327_Characterization_of_scattering_losses_in_tapered_optical_fibers_perturbed_by_a_microfiber_tip

    Tiancai Zhang, Wei Wu, Pengfei Yang, Gang Li, Pengfei Zhang. High-Finesse Micro-Optical Fabry-Perot Cavity and Its Applications in Strongly Coupled Cavity Quantum Electrodynamics[J]. Acta Optica Sinica, 2021, 41(1): 0127001
    Download Citation