• Journal of Semiconductors
  • Vol. 41, Issue 6, 061101 (2020)
Chuen-Keung Sin, Jingzhao Zhang, Kinfai Tse, and Junyi Zhu
Author Affiliations
  • The Chinese University of Hong Kong, Hong Kong, China
  • show less
    DOI: 10.1088/1674-4926/41/6/061101 Cite this Article
    Chuen-Keung Sin, Jingzhao Zhang, Kinfai Tse, Junyi Zhu. A brief review of formation energies calculation of surfaces and edges in semiconductors[J]. Journal of Semiconductors, 2020, 41(6): 061101 Copy Citation Text show less

    Abstract

    To have a high quality experimental growth of crystals, understanding the equilibrium crystal shape (ECS) in different thermodynamic growth conditions is important. The factor governing the ECS is usually the absolute surface formation energies for surfaces (or edges in 2D) in different orientations. Therefore, it is necessary to obtain an accurate value of these energies in order to give a good explanation for the observation in growth experiment. Historically, there have been different approaches proposed to solve this problem. This paper is going to review these representative literatures and discuss the pitfalls and advantages of different methods.
    $ r({{h}}) = \min \limits_{ {{m}}}\frac{\gamma({{m}})}{{{m}}\cdot{{h}}}, $(1)

    View in Article

    $ \gamma = \frac{1}{2a}(E_{\rm{slab}}-nE_{\rm{bulk}}), $(2)

    View in Article

    $ \mu_{\rm{A}}+\mu_{\rm{B}} = E_{\rm{AB}} = E_{\rm{A}}+E_{\rm{B}}+\Delta H_{\rm{f}}, $(3)

    View in Article

    $ E_\alpha+\Delta H_{\rm{f}} \leqslant\mu_\alpha\leqslant E_\alpha, $(4)

    View in Article

    $ \Delta H_{\rm{f}} \leqslant \Delta\mu_{\alpha}\leqslant 0. $(5)

    View in Article

    $ \gamma = \frac{1}{2a}(E_{\rm{slab}}-n_{\rm{A}}\mu_{\rm{A}}-n_{\rm{B}}\mu_{\rm{B}}), $(6)

    View in Article

    $ E_{\rm{slab}} = E_{{\rm{surface}}\ {\rm{A}}}+E_{{\rm{surface}}\ {\rm{B}}}+E_{\rm{interface}}+\sum\limits_{ i}n_i \mu_{ i,{\rm{strained}}}. $(7)

    View in Article

    $\begin{array}{l} E_{{\rm{tot}},{\rm{AB}}} = n_{\rm{A}}\mu_{\rm{A}} + n_{\rm{B}}\mu_{\rm{B}} + \displaystyle\sum\limits_{\rm{surfaces}}\sigma_{\rm{surfaces}} \\ \quad\quad\quad\quad+\displaystyle\sum\limits_{\rm{edges}}\sigma_{\rm{edges}} + \displaystyle\sum\limits_{\rm{corners}}\sigma_{\rm{corners}}. \end{array} $(8)

    View in Article

    $ E(\rm{AH}_4) = 4\mu_{{\rm{H}}_{\rm{A}}} + \mu_{\rm{A}}. $(9)

    View in Article

    $ \begin{array}{l} E_{\rm{tot}}(n) = \dfrac{1}{6}n(n+1)(n+2)\mu_{\rm{A}} + \dfrac{1}{6}\ n(n-1)(n+1)(E_{\rm{AB}}-\mu_{\rm{A}}) \\ \;\;\;\;\;\;\;\;\;\;\;\;\; +\, 2(n\!-\!2)(n\!-\!3)\mu_{{\rm{H}}_{\rm{A}}}^{\rm{surface}} \!+\! 12(n\!-\!2)\mu_{{\rm{H}}_{\rm{A}}}^{\rm{edge}} \!+\! 12\mu_{{\rm{H}}_{\rm{A}}}^{\rm{corner}}\!. \end{array} $(10)

    View in Article

    $ \mu_{\rm{Ga}}+\mu_{\rm{N}} = E_{\rm{GaN}} = E_{\rm{Ga}} + E_{{\rm{N}}_2} + \Delta H_{\rm{f}}({\rm{GaN}}), $(11)

    View in Article

    $ \begin{array}{l} \gamma = \dfrac{1}{A}\{E_{\rm{slab}}-n_{\rm{Ga}}[E_{\rm{Ga}}+\Delta H_{\rm{f}}({\rm{GaN}})]-n_{\rm{N}} E_{{\rm{N}}_2} \\ \quad\quad-\;(n_{\rm{N}} - n_{\rm{Ga}})\Delta\mu_{\rm{N}} - \displaystyle\sum\mu_{{\rm{H}}_{\rm{Ga}}} - \displaystyle\sum\mu_{{\rm{H}}_{\rm{N}}}\}, \end{array}$(12)

    View in Article

    $ \begin{array}{l} \mu_{{\rm{H}}_{\rm{Ga}}}^{\rm{steric}} = \dfrac{1}{n_{{\rm{H}}_{\rm{Ga}}}^{\rm{steric}}}\Big[E_{\rm{slab}}-n_{\rm{Ga}}(E_{\rm{Ga}}+\Delta H_{\rm{f}}({\rm{GaN}}))\\ \quad\quad\quad\quad-\;n_{\rm{N}} E_{{\rm{N}}_2} - (n_{\rm{N}} - n_{\rm{Ga}})\Delta\mu_{\rm{N}} - \displaystyle\sum\mu_{{\rm{H}}_{\rm{Ga}}} - \displaystyle\sum\mu_{{\rm{H}}_{\rm{N}}}\Big], \end{array} $(13)

    View in Article

    $ \begin{array}{l} \gamma = \dfrac{1}{A}\Big[E_{\rm{slab}}- n_{\rm{Ga}}(E_{\rm{Ga}}+\Delta H_{\rm{f}}({\rm{GaN}}))\\ \quad\quad-\;n_{\rm{N}} E_{{\rm{N}}_2} - (n_{\rm{N}} - n_{\rm{Ga}})\Delta\mu_{\rm{N}} - \displaystyle\sum\mu_{{\rm{H}}_{\rm{Ga}}} \\ \quad\quad-\displaystyle\sum\mu_{{\rm{H}}_{\rm{N}}}-n_{{\rm{H}}_{\rm{Ga}}}^{\rm{steric}}\mu_{{\rm{H}}_{\rm{Ga}}}^{\rm{steric}}-n_{{\rm{H}}_{\rm{N}}}^{\rm{steric}}\mu_{{\rm{H}}_{\rm{N}}}^{\rm{steric}}\Big]. \end{array}$(14)

    View in Article

    $ \begin{array}{l} \sigma_{\rm{pass}}^{11\overline{2}2}-\sigma_{\rm{pass}}^{\overline{11}2\overline{2}} = \dfrac{1}{4A^{11\overline{2}2}}\{ [E_{\rm{wedge}}^{11\overline{2}2}({\rm{large}})-E_{\rm{wedge}}^{\overline{11}2\overline{2}}({\rm{large}})]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;-[E_{\rm{wedge}}^{11\overline{2}2}({\rm{small}})-E_{\rm{wedge}}^{\overline{11}2\overline{2}}({\rm{small}})]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;- 4[A^{ 000\overline{1}}\sigma_{\rm{pass}}^{ 000\overline{1}}-A^{\rm{0001}}\sigma_{\rm{pass}}^{\rm{0001}}]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+2[\mu_{\rm{N}}-\mu_{{\rm{A}}l}]\}, \end{array} $(15)

    View in Article

    $ \sigma_{\rm{pass}}^{11\overline{2}2} = \frac{1}{A^{11\overline{2}2}}[E_{\rm{total}}^{11\overline{2}2}-\mu_{{\rm{A}}l}(n_{{\rm{A}}l}-n_{\rm{N}})-E_{\rm{AlN}}^{\rm{bulk}}n_{\rm{N}} - \mu_{\rm{H}} n_{\rm{H}} - A^{11\overline{2}2}\sigma_{\rm{pass}}^{\overline{11}2\overline{2}}], $(16)

    View in Article

    $ \mu_{\rm{gas}} = -k_{\rm{B}} T \ln{\frac{gk_{\rm{B}} T}{p}\times \xi_{\rm{trans}} \xi_{\rm{rot}} \xi_{\rm{vib}}}, $(17)

    View in Article

    $ \gamma_{\rm{ZB}}(\mu) = \frac{E_{{\rm{B-}}{\rm{edged}}\ {\rm{cluster}}}-n_{\rm{BN}}\mu_{\rm{BN}}-n_{\rm{edge}}\mu_{\rm{B}}}{3n_{\rm{edge}}}, $(18)

    View in Article

    $ \gamma_{\rm{ZN}}(\mu) = \frac{E_{{\rm{N-}}{\rm{edged}}\ {\rm{cluster}}}-n_{\rm{BN}}\mu_{\rm{BN}}-n_{\rm{edge}}\mu_{\rm{N}}}{3n_{\rm{edge}}}, $(19)

    View in Article

    $ \gamma = E_{\rm{Z}} + E_{\rm{ZPE}} - n_{\rm{Mo}}\mu_{\rm{Mo}} - n_{\rm{S}}\mu_{\rm{S}} = 3l\gamma_{\rm{Z}} + 3\gamma_{\rm{V}}, $(20)

    View in Article

    $ \begin{array}{l} \;\;\;\; \gamma_{\rm{Z}} = (\Delta E_{\rm{Z}}+\Delta E_{\rm{ZPE}}-\Delta n_{\rm{Mo}}\mu_{{\rm{MoS}}_2}-\Delta n\mu_{\rm{S}})/3(l_1-l_2),\\ \;\;\;\; \Delta n_{\rm{Mo}} = n_{\rm{Mo}}(l_1)-n_{\rm{Mo}}(l_2),\\ \;\;\;\;\Delta n = n_{\rm{S}}(l_1) - n_{\rm{S}}(l_2)-2[n_{\rm{Mo}}(l_1)-n_{\rm{Mo}}(l_2)], \end{array} $(21)

    View in Article

    $ \gamma_{\rm{edge}} = \frac{1}{l}\left(E_{\rm{tot}}-n_{\rm{B}}\mu_{\rm{B}} - n_{\rm{N}}\mu_{\rm{N}} - n_{{\rm{H}}_{\rm{N}}}\mu_{{\rm{H}}_{\rm{N}}}-\sum\limits_{{i}}n_i\mu_i\right), $(22)

    View in Article

    $ E_{\rm{tot}}^{\rm{cluster}} = \frac{m^2+m}{2}\mu_{\rm{N}} + \frac{m^2-m}{2}\mu_{\rm{B}} + (3m-6)\mu_{{\rm{H}}_{\rm{N}}} + 6\mu_{{\rm{H}}_{\rm{N}}}^{\rm{corner}}, $(23)

    View in Article

    $ \mu_{\rm{B}}+\mu_{\rm{N}} = E_{{{\rm{h}}\rm{-}{\rm{BN}}}} = E_{\rm{B}} + E_{\rm{N}} + \Delta H_{{{\rm{h}}\rm{-}{\rm{BN}}}}, $(24)

    View in Article

    $ E_{\rm{tot}}^{\rm{cluster}} \!=\! m^2\! \left(\!\frac{{E_{{{\rm{h}}-{\rm{BN}}}}}}{2}\!\right)+m\left(\!\mu_{\rm{N}}-\frac{{E_{{{\rm{h}}\!-\!{\rm{BN}}}}}}{2}+3{\mu_{{\rm{H}}_{\rm{N}}}} \!\right)+6({\mu_{{\rm{H}}_{\rm{N}}}^{\rm{corner}}}-{\mu_{{\rm{H}}_{\rm{N}}}}). $(25)

    View in Article

    $ E_r = \frac{1}{2l}(E_{\rm{p}}-n_{\rm{N}}\mu_{\rm{N}}-n_{\rm{B}}\mu_{\rm{B}}-n_{{\rm{H}}_{\rm{N}}}\mu_{{\rm{H}}_{\rm{N}}}-n_{{\rm{H}}_{\rm{B}}}\mu_{{\rm{H}}_{\rm{B}}}). $(26)

    View in Article

    $ \mu_{\rm{H}} = \frac{1}{2}[E_{{\rm{H}}_2}+2\Delta\mu_{\rm{H}}(T,p)], $(27)

    View in Article

    $ \Delta\mu_{\rm{H}}(T,p) = \frac{G}{2N} $(28)

    View in Article

    Chuen-Keung Sin, Jingzhao Zhang, Kinfai Tse, Junyi Zhu. A brief review of formation energies calculation of surfaces and edges in semiconductors[J]. Journal of Semiconductors, 2020, 41(6): 061101
    Download Citation