• Photonics Research
  • Vol. 7, Issue 3, 341 (2019)
Tiecheng Wang, Zhixin Li, and Xiangdong Zhang*
Author Affiliations
  • Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.1364/PRJ.7.000341 Cite this Article Set citation alerts
    Tiecheng Wang, Zhixin Li, Xiangdong Zhang. Improved generation of correlated photon pairs from monolayer WS2 based on bound states in the continuum[J]. Photonics Research, 2019, 7(3): 341 Copy Citation Text show less
    References

    [1] D. Bouwmeester, A. Ekert, A. Zeilinger. The Physics of Quantum Information(2000).

    [2] M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information(2000).

    [3] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature (London), 409, 46-52(2001).

    [4] C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elías, N. Perea-López, M. Terrones, V. Crespi, Z. Liu. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci. Rep., 4, 5530(2014).

    [5] L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, A. M. de Paula. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B, 87, 201401(2013).

    [6] A. N. Vamivakas, B. E. A. Saleh, A. V. Sergienko, M. C. Teich. Quantum ellipsometry using correlated-photon beams. Phys. Rev. A, 70, 043810(2004).

    [7] Y. Zeng, Y. Fu, X. Chen, W. Lu, H. Agren. Highly efficient generation of entangled photon pair by spontaneous parametric downconversion in defective photonic crystals. J. Opt. Soc. Am. B, 24, 1365-1368(2007).

    [8] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 75, 4337-4341(1995).

    [9] X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, J. W. Pan. Generation of narrow-band polarization entangled photon pairs for atomic quantum memories. Phys. Rev. Lett., 101, 190501(2008).

    [10] K. Niizeki, K. Ikeda, M. D. Zheng, X. P. Xie, K. Okamura, N. Takei, N. Namekata, S. Inoue, H. Kosaka, T. Y. Horikiri. Ultrabright narrow-band telecom two-photon source for long-distance quantum communication. Appl. Phys. Express, 11, 042801(2018).

    [11] D. Huber, M. Reindl, J. Aberl, A. Rastelli, R. Trotta. Semiconductor quantum dots as an ideal source of polarization entangled photon pairs on-demand: a review. J. Opt., 20, 073002(2018).

    [12] M. J. A. de Dood, W. T. M. Irvine, D. Bouwmeester. Nonlinear photonic crystals as a source of entangled photons. Phys. Rev. Lett., 93, 040504(2004).

    [13] W. T. M. Irvine, M. J. A. de Dood, D. Bouwmeester. Bloch theory of entangled photon generation in non-linear photonic crystals. Phys. Rev. A, 72, 043815(2005).

    [14] M. Centini, J. Perina, L. Sciscione, C. Sibilia, M. Scalora, M. J. Bloemer, M. Bertolotti. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals. Phys. Rev. A, 72, 033806(2005).

    [15] L. Sciscione, M. Centini, C. Sibilia, M. Bertolotti, M. Scalora. Entangled, guided photon generation in (1+1)-dimensional photonic crystals. Phys. Rev. A, 74, 013815(2006).

    [16] V. Roppo, M. Centini, C. Sibilia, M. Bertolotti, D. de Ceglia, M. Scalora, N. Akozbek, M. J. Bloemer, J. W. Haus, O. G. Kosareva, V. P. Kandidov. Role of phase matching in pulsed second-harmonic generation: walk-off and phase-locked twin pulses in negative-index media. Phys. Rev. A, 76, 033829(2007).

    [17] X. Li, P. L. Voss, J. E. Sharping, P. Kumar. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett., 94, 053601(2005).

    [18] J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, P. S. Russell. Photonic crystal fiber source of correlated photon pairs. Opt. Express, 13, 534-544(2005).

    [19] J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. Russell, J. G. Rarity. High brightness single mode source of correlated photon pairs using a photonic crystal fiber. Opt. Express, 13, 7572-7582(2005).

    [20] S. Wei, Y. Dong, H. Wang, X. D. Zhang. Enhancement of correlated photon-pair generation from a positive-negative index material heterostructure. Phy. Rev. A, 81, 053830(2010).

    [21] Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, T. F. Heinz. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett., 13, 3329-3333(2013).

    [22] K. L. Seyler, J. R. Schaibley, P. Gong, P. Rivera, A. M. Jones, S. Wu, J. Yan, D. G. Mandrus, W. Yao, X. Xu. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol., 10, 407-411(2015).

    [23] M. Weismann, N. C. Panoiu. Theoretical and computational analysis of second- and third-harmonic generation in periodically patterned graphene and transition monolayers. Phys. Rev. B, 94, 035435(2016).

    [24] M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, M. Scalora. Nonlinear processes in one-dimensional photonic crystal with graphene-based defect. Phys. Rev. B, 89, 165139(2014).

    [25] S. Zhang, X. D. Zhang. Strong second-harmonic generation from bilayer-graphene embedded in one-dimensional photonic crystals. J. Opt. Soc. Am. B, 33, 452-460(2016).

    [26] J. Niu, M. Luo, Q. H. Liu. Enhancement of graphene’s third-harmonic generation with localized surface plasmon resonance under optical/electro-optic Kerr effects. J. Opt. Soc. Am. B, 33, 615-621(2016).

    [27] L. Wang, T. Wang, S. Zhang, P. Xie, X. D. Zhang. Larger enhancement in four-wave mixing from graphene embedded in one-dimensional photonic crystals. J. Opt. Soc. Am. B, 34, 2000-2010(2017).

    [28] M. Zhang, X. D. Zhang. Ultrasensitive optical absorption in graphene based on bound states in the continuum. Sci. Rep., 5, 8266(2015).

    [29] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, B. Kanté. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [30] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [31] E. N. Bulgakov, A. F. Sadreev. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B, 78, 075105(2008).

    [32] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).

    [33] M. I. Molina, A. E. Miroshnichenko, Y. S. Kivshar. Surface bound states in the continuum. Phys. Rev. Lett., 108, 070401(2012).

    [34] J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett., 109, 067401(2012).

    [35] C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [36] C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Bloch surface eigenstates within the radiation continuum. Light Sci. Appl., 2, e84(2013).

    [37] F. Monticone, A. Alù. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett., 112, 213903(2014).

    [38] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, M. Soljačić. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).

    [39] M. G. Silveirinha. Spontaneous parity-time-symmetry breaking in moving media. Phys. Rev. A, 89, 023813(2014).

    [40] E. N. Bulgakov, K. N. Pichugin, A. F. Sadreev. All-optical light storage in bound states in the continuum and release by demand. Opt. Express, 23, 22520-22531(2015).

    [41] T. Wang, X. D. Zhang. Improved third-order nonlinear effect in graphene based on bound states in the continuum. Photon. Res., 5, 629-639(2017).

    [42] Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, T. F. Heinz. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B, 90, 205422(2014).

    [43] M. Weismann, N. C. Panoiu. Theoretical and computational analysis of second-and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers. Phys. Rev. B, 94, 035435(2016).

    [44] Y. Yang, C. Peng, Y. Liang, Z. Li, S. Noda. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett., 113, 037401(2014).

    [45] Z. Y. Li, L. L. Lin. Photonic band structures solved by a plane-wave-bases transfer-matrix method. Phys. Rev. E, 67, 046607(2003).

    [46] T. Gruner, D.-G. Welsh. Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A, 53, 1818-1829(1996).

    [47] N. Stefanou, V. Yannopapas, A. Modinos. Heterostructures of photonic crystals: frequency bands and transmission coefficients. Comput. Phys. Commun., 113, 49-77(1998).

    [48] T. R. Zhan, X. Shi, Y. Y. Dai, X. H. Liu, J. Zi. Transfer matrix method for optics in graphene layers. J. Phys. Condens. Matter, 25, 215301(2013).

    [49] E. D. Palik, G. Ghosh. Handbook of Optical Constants of Solids(1998).

    [50] E. N. Bulgakov, A. F. Sadreev. Transfer of spin angular momentum of an incident wave into orbital angular momentum of the bound states in the continuum in an array of dielectric spheres. Phys. Rev. A, 94, 033856(2016).

    [51] A. Aryshev, A. Potylitsyn, G. Naumenko, M. Shevelev, K. Lekomtsev, L. Sukhikh, P. Karataev, Y. Honda, N. Terunuma, J. Urakawa. Monochromaticity of coherent Smith-Purcell radiation from finite size grating. Phys. Rev. Beams, 20, 024701(2017).

    CLP Journals

    [1] Yunning Lu, Zeyang Liao, Fu-Li Li, Xue-Hua Wang. Integrable high-efficiency generation of three-photon entangled states by a single incident photon[J]. Photonics Research, 2022, 10(2): 389

    [2] Matthew Parry, Andrea Mazzanti, Alexander Poddubny, Giuseppe Della Valle, Dragomir N. Neshev, Andrey A. Sukhorukov. Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces[J]. Advanced Photonics, 2021, 3(5): 055001

    Tiecheng Wang, Zhixin Li, Xiangdong Zhang. Improved generation of correlated photon pairs from monolayer WS2 based on bound states in the continuum[J]. Photonics Research, 2019, 7(3): 341
    Download Citation