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Entangled photons are the fundamental resource in quantum information processing. How to produce them
efficiently has always been a matter of concern. Here we propose a new way to produce correlated photons effi-
ciently from monolayerWS2 based on bound states in the continuum (BICs). The BICs of radiation modes in the
monolayer WS2 are realized by designing the photonic crystal slab-WS2-slab structure. The generation efficiency
of correlated photon pairs from such a structure has been studied by using a rigorous quantum model of sponta-
neous parametric down-conversion with the plane wave expansion method. It is found that the generation effi-
ciency of correlated photon pairs is greatly improved if the signal and idler fields are located at the BICs
determined by the inverse scattering matrix of the structure. This is in contrast to the parametric down-conversion
process for the enhanced generation of nonlinear waves if the pump field is located at the BICs determined by the
scattering matrix of the structure. The generation rate of the correlated photon pairs can be improved by 7 orders
of magnitude in some designed structures. The generated quantum signals are sensitive to the wavelength and
exhibit narrowed relative line width, which is very beneficial for quantum information processing. © 2019

Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000341

1. INTRODUCTION

In the past two decades, there has been a great deal of interest
in studying how to produce entangled photon pairs, because
they play a crucial role in quantum information processing
[1–3]. Many methods to produce such resources have been de-
veloped [4–7]. A popular approach to generating entangled
photon pairs is based on the nonlinear process of parametric
down-conversion in naturally birefringent nonlinear crystals
such as β-barium borate (BBO) [8]. Other mechanisms, such
as using quantum dots, quasi-phase-matching in photonic
crystals, and periodically poled materials, have also been pro-
posed [9–18].

On the other hand, nonlinear optical properties of mono-
layer transition metal dichalcogenides (TMDC) have attracted
much attention in recent years because monolayer TMDC
as two-dimensional systems have ultra-high second-order non-
linear susceptibility [19–22]. For example, some investigations
have shown that the value of the effective second-order non-
linear susceptibility for the monolayer WS2 is 3 orders of
magnitude larger than the values usually reported for other
nonlinear bulk crystals [23]. The question is whether the

ultra-high second-order nonlinear susceptibility in the mono-
layer TMDC can be used to produce entangled photons effi-
ciently. In fact, such an idea is constrained by weak interactions
between monolayer TMDC and light due to the single atom
thickness of the sample. The weak interactions block efficient
generation of nonlinear effects.

Fortunately, some methods to improve the interaction be-
tween monolayer materials and electromagnetic (EM) waves
have been proposed [24–27]. For example, bound states in the
continuum (BICs) can be utilized to improve this interaction
[28,29]. Analogous to the localized electrons with energy larger
than their potential barriers, light BICs have been realized
in recent years [30–34]. The BICs are known as embedded
trapped modes, which correspond to discrete eigenvalues co-
existing with extended modes of a continuous spectrum. They
have been shown to exist in the dielectric gratings, waveguide
structures, the surface of the object, photonic crystal slabs, and
some open subwavelength nanostructures [35–40]. Recently, it
has been demonstrated that nonlinear effects can be improved
greatly using these BICs [41].

Motivated by these investigations, in this work we explore
the possibility to improve the generation rate of correlated
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photon pairs based on the BICs. In order to calculate this gen-
eration rate in our model including a photonic crystal slab, we
extend the previous quantum theory of spontaneous parametric
down-conversion (SPDC) by using a plane wave expansion
method for the first time to our knowledge. We find that pho-
ton-pair generation is enhanced if the signal and idler fields are
located at the resonant state determined by the inverse scatter-
ing matrix of the structure and the generated fields possess a
narrowed relative line width and directivity. It is noted that
we do not perform the comparison between our monolayer
source of WS2 with those SPDC sources, such as periodically
poled lithium niobate (PPLN) waveguides and periodically
poled KTiOPO4 (PPKTP) crystal. This is because it is not suit-
able for comparing the source of the monolayer atom with
those of bulk SPDC sources. However, we compare the case
based on the BICs with those of bare monolayers.

2. THEORY AND METHOD

We consider a three-layer structure consisting of a photonic
crystal slab, a monolayer WS2, and a dielectric slab as shown
in Figs. 1(a) and 1(b). The monolayer WS2 is put at the inter-
face between the photonic crystal slab and the dielectric slab.
The photonic crystal slab consists of a square lattice of air holes
introduced into a high-index dielectric medium, and the cor-
responding lattice constant is denoted by l. The thickness, rel-
ative permittivity, and relative permeability of this high-
index medium are denoted by d 1, εp, and μp, respectively.
The thickness, relative permittivity, and relative permeability
of the dielectric slab are represented by d 2, εs, and μs, respec-
tively. The thickness, relative permittivity, relative permeability,
and second-order susceptibility of the monolayer WS2 are de-
scribed by dw, εw, μw, and χ�2�. All these materials are taken to
be nonmagnetic. The photonic crystal slab and dielectric slab
are taken to be linear in order to investigate the nonlinear effect
of monolayer WS2. As one component of TMDC monolayers,
the relative permittivity of monolayers WS2 can be calculated
by the permittivity of TMDC monolayer εTMDC, which is
equal to a superposition of N Lorentzian functions [42,43],

εTMDC � 1�PN
k�1

f k
ω2
k−ω

2−iωγk
, where ω is the angular fre-

quency of the EM wave; f k, ωk, and γk represent the oscillator
strength, resonance frequency, and spectral width of the kth
oscillator, respectively; and the values of these model para-
meters are provided in Ref. [44].

A. Theory for the Spontaneous Parametric Down-
Conversion in the Photonic Crystal Slab-Monolayer
WS2-Slab Structure
In contrast to the graphene, TMDC monolayers are noncen-
trosymmetric and therefore the second-order nonlinear effect is
allowed. Based on the symmetry properties of their space group
D3h, it can be shown that the structure of their quadratical sus-
ceptibility tensor χ�2� yields only one independent and nonvan-
ishing component [4,5]:

χ�2� � χ�2�yyy � −χ�2�yxx � −χ�2�xyx � −χ�2�xxy, (1)

where x represents the zigzag direction of the monolayer and y
is the orthogonal armchair direction. According to Ref. [23],
the effective thickness of the monolayer WS2 is taken as
dw � 0.618 nm. Figure 1(b) shows the process of photon-pair
generation in the three-layer structure. When a pump field with
the angular frequency ωp is incident on the structure, the signal
and idler fields with angular frequencies ωs and ωi, respectively,
are generated simultaneously due to the second-order nonlinear
effect of the monolayer WS2, the incident angle of the pump
wave is denoted by θp, and the irradiated angles of the signal
and idler fields are taken as θs and θi. The nonlinear interaction
in the three-layer structure is described by a HamiltonianH int�t�:

H int�t� � ε0

Z
d~r
X
α,β, γ

�χ�2�αβγE
�
p,α�~r, t�Ê−

s,β�~r, t�Ê−
i,γ�~r, t��H:c:�,

(2)

where ε0 is the permittivity of air and χ�2�αβγ represent the com-
ponents of susceptibility tensor χ�2� of the monolayer WS2.
Here α, β, and γ denote the direction (x or y), E�

p,α�~r, t� is
the positive frequency electric field for the classical strong pump
wave at the monolayerWS2, and Ê�

s,β�~r, t� and Ê�
i,γ�~r, t� denote

the corresponding electric field operators for the generated pho-
tons with frequencies ωs and ωi. E−

p,α�~r, t�, Ê−
s,β�~r, t�, and

Ê−
i,γ�~r, t� denote the corresponding negative frequency electric

fields, which are the conjugated terms of the positive frequency
fields. H.c. stands for a Hermitian conjugated term.

The plane-wave expansion method is utilized to study the
photon-pair generation [45]. Because of the periodicity of the
three-layer structure, the pump field can be expanded in plane
waves as

E�
p,α�~r, t� �

X
mn

�EpFmn,α exp�iβpmnz� � EpBmn,α exp�−iβpmnz��

× exp�i�kpmnxx � kpmnyy� − iωpt�
�
X
mn

E�
pmn,α�z,ωp� exp�i�kpmnxx � kpmnyy� − iωpt�,

(3)

βpmn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p − k2pmnx − k2pmny

q
, kp � ωpn�ωp�∕c, (4)

Fig. 1. (a) Diagram of the photonic crystal slab-monolayer
WS2-slab. The air holes are arranged in a square lattice with lattice
constant l and the radius of the holes is r. The thicknesses of the pho-
tonic crystal slab and dielectric slab are denoted by d 1 and d 2, and the
monolayer WS2 is put at the interface between the photonic crystal
slab and the dielectric slab. (b) Schematic of the photon-pair gener-
ation process in the three-layer structure. The pump beam with fre-
quency ωp and angle θp is incident on the three-layer structure, and
due to the second-order nonlinear effect of the monolayer WS2, the
signal field with frequency ωs and angle θs and the idler field with
frequency ωi and angle θi are generated.
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where �kpmnx , kpmny� � �kpx , kpy� � m ~b1 � n ~b2 is the Bragg
wave vector of the pump field in the x–y plane, �kpx , kpy� is
the reduced wave vector that lies in the surface Brillouin zone,
~b1 and ~b2 represent the reciprocal lattice vector, the corresponding
wave vector along the z direction is denoted by βpmn, and the mag-
nitude of the wave vector is marked by kp. n�ωp� stands for the
refractive index of the monolayer WS2 for the pump field with
frequency ωp, and c denotes the velocity of light in the air.
EpFmn,α and EpBmn,α represent the amplitude for the downward
and upward propagating parts of the pump field. The electric field
operators Ê�

v,α�~r, t� with the frequency ωv and polarization α for
the signal (v � s) and idler (v � i) fields in the monolayer WS2
can be also expanded in plane waves [46,11]:

Ê−
v,α�~r, t�

�
Z

∞

0

dωv

X
mn

Gvmn�â2vFmn,α exp�iβvmnz�

� â2vBmn,α exp�−iβvmnz�� exp�i�kvmnxx � kvmnyy� − iωvt�

�
Z

∞

0

dωv

X
mn

Ê−
vmn,α�z,ων� exp�i�kvmnxx � kvmnyy� − iωvt�,

(5)

Gvmn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0ℏω2εI �ωv�
8πβIvmnβ

2
vmn

s
, (6)

βvmn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2v − k2vmnx − k2vmny

q
, kv �

ωv

c
n�ωv�: (7)

Here ℏ is the reduced Planck constant, B denotes the area
of the transverse profile of the beam, and βIvmn and εI �ωv�
are the imaginary parts of βvmn and ε�ωv�, respectively.
â2vFmn,α and â2vBmn,α are the annihilation operators for the gen-
erated field in the monolayer WS2, and the superscript 2 rep-
resents that the monolayer WS2 is located at the second layer;
these operators can be written in the matrix forms â2vF �
�� � � â2vFmn,x , â2vFmn,y � � ��T and â2vB � �� � � â2vBmn,x , â2vBmn,y � � ��T .
In a similar way, the annihilation operators for the generated
field up (down) the three-layer structure are denoted by â0vFmn,α
and â0vBmn,α (â4vFmn,α and â4vBmn,α); these operators can also be
written in the matrix forms âlvF � �� � � âlvFmn,x , âlvFmn,y � � ��T
and âlvB � �� � � âlvBmn,x , âlvBmn,y � � ��T (l � 0, 4). These opera-
tors can be expressed as

�
â4vF
â0vB

�
�
�

Q I Q II

Q III Q IV

��
â0vF
â4vB

�
� Q

�
â0vF
â4vB

�
, (8a)

�
â2vF
â2vB

�
�
�
T 1,2

I T 1,2
II

T 1,2
III T 1,2

IV

��
â0vF
â0vB

�
� T 1,2

�
â0vF
â0vB

�
, (8b)

where the submatrices Qη �η � I, II, III, IV� of scattering matrix
Q [45,47] and submatrices T 1,2

κ �κ � I, II, III, IV� of transfer
matrix T 1,2 [48] can be obtained by the boundary conditions,
and the superscripts 1, 2 in the transfer matrixes stand for the
slices consisting of the photonic crystal slab and monolayer WS2.
Based on Eq. (8), the operator matrixes â2vF and â2vB in the mono-
layer WS2 can be expressed in terms of the operator matrixes â4vF
and â0vB outside the structure as

�
â2vF
â2vB

�
�
�

T I T II

T III T IV

��
−�Q III − Q IVQ−1

II Q I�−1Q IVQ−1
II �Q III − Q IVQ−1

II Q I�−1
0 1

��
â4vF
â0vB

�
�
�
Fv11 Fv12

Fv21 Fv22

��
â4vF
â0vB

�
: (9)

It can be easily verified that the following equation holds:

Q−1	 �
 
Q−1	

I Q−1	
II

Q−1	
III Q−1	

IV

!
�
 

Q I Q II

Q III Q IV

!
−1	

�
 

−�Q III −Q IVQ−1
II Q I�−1Q IVQ−1

II �Q III −Q IVQ−1
II Q I�−1

Q−1
II �Q−1

II Q I�Q III −Q IVQ−1
II Q I�−1Q IVQ−1

II −Q−1
II Q I�Q III −Q IVQ−1

II Q I�−1

!	
:

(10)

Combining Eqs. (9) and (10), we find that parts of the matrices
F	
v11, F

	
v12, F

	
v21, and F	

v22, which connect the creation oper-
ators in theWS2 to the creation operators outside the structure,
are constructed by parts of the inverse scattering matrix Q−1	.

In classical scattering problems, the transmission (t), reflec-
tion (r), and absorption (a) can be calculated by the scattering
matrix in the following method. Assuming that the waveP

mnE
in
Fmn,α exp�iβmnz� exp�i�kmnxx � kmnyy� − iωt � is incident

on the system, the transmitted wave
P

mnE
tr
Fmn,α exp�iβmnz�·

exp�i�kmnxx � kmnyy� − iωt� and reflected wave
P

mnE
rf
Bmn,α ·

exp�−iβmnz� exp�i�kmnxx � kmnyy� − iωt� can be calculated by
the scattering matrix Q as

Etr
Fmn,α �

X
pqβ

Q I,mnα,pqβEin
Fpq,β, (11a)

Erf
Bmn,α �

X
pqβ

Q III,mnα,pqβEin
Fpq,β: (11b)

Based on the calculated SH fields in Eq. (11), the electric field
intensities of the transmitted �I tr�2ω�� and reflected �I rf �2ω��
SH fields radiated from the three-layer structure can be calcu-
lated by

I tr�2ω� �
1

2
ε0
X
α,mn

�E�
3,α,mn�2ω���E�

3,α,mn�2ω��	, (12a)

I rf �2ω� �
1

2
ε0
X
α,mn

�E−
0,α,mn�2ω���E−

0,α,mn�2ω��	, (12b)

I in�ω� �
1

2
ε0
X
α,mn

�E�
in,α,mn�ω���E�

in,α,mn�ω��	: (12c)
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Thus, the conversion efficiencies for the SHG fields can be
obtained as

F � I tr�2ω� � I rf �2ω�
I in�ω�

: (13)

And the transmission t (reflection r) is defined as the ratio
of the flux of the transmitted (reflected) wave to the flux of
the incident wave and can be expressed as

t �
P

mnαE
tr
Fmn,αE

tr	
Fmn,αβmnP

pqαE
in
Fpq,αE

in	
Fpq,αβpq

, (14a)

r �
P

mnαE
rf
Bmn,αE

rf 	
Bmn,αβmnP

pqαE
in
Fpq,αE

in	
Fpq,αβpq

: (14b)

According to the energy conservation, the absorption a is

a � 1 − t − r: (14c)

The transmission t 0, reflection r 0, and absorption a 0 can also be
defined as the expressions of t, r, and a in Eq. (14) except that
the transmitted wave amplitude Etr

Fmn,α and reflected wave am-

plitude Erf
Fmn,α calculated by the scattering matrixesQ I andQ III

are replaced by the corresponding wave amplitudes calculated
by the inverse scattering matrixes Q−1	

I and Q−1	
III .

After getting the transmission t (t 0), reflection r (r 0), absorp-
tion a (a 0), and the scattering (inverse) matrixes, we can get the
corresponding electric field E (E 0) distribution in the three-
layer structure. Here we omit the effect of the photon-pair
generation on the electric field distribution, because the
second-order nonlinear effect is so weak compared with the
fundamental frequency field. In the next part of this work,
we denote the electric field E (E 0) at the WS2 and EW (E 0

W)
at x � 0 and y � 0. Inserting Eqs. (3) and (5) into Eq. (2),
we can get the following expression by using the transverse
Fourier transformation:

H int�t� � ε0B
ffiffiffiffiffi
2π

p Z
∞

0

dωs

Z
∞

0

dωi

Z
dzχ�2�αβγ

×
X

mn, ot, rs

δ�kpmnx − ksotx − kirsx�δ�kpmny − ksoty − kirsy�

× E�
pmn,α�z,ωp�Ê−

sot,β�z,ωs�Ê−
irs,γ�z,ωi�

× exp�−i�ωp − ωs − ωi�� �H:c:: (15)

From Eq. (15), the transverse wave vectors of the pump, signal,
and idler fields satisfy the following relations:

kpmnx − ksotx − kirsx � 0, (16a)

kpmny − ksoty − kirsy � 0: (16b)

B. Theory for the Generation of Correlated Photon
Pairs Based on Bound States in the Continuum
The output state jψiouts,β,i,γ of signal and idler fields can be ob-
tained by the Schrödinger equation with the assumption of
the incident vacuum state jvaci; furthermore, we expand it
to the first order in nonlinear perturbation as

jψiouts,β,i,γ � exp

�
−
i
ℏ

Z
∞

−∞
dtH int�t�

�
jvaci

� jvaci − i
ℏ

Z
∞

−∞
dtH int�t�jvaci: (17)

Inserting Eqs. (3), (5), and (15) into Eq. (17), jψiouts,β,i,γ can be
expressed as

jψiouts,β,i,γ � jvaci − i
ℏ
ε0B

ffiffiffiffiffi
2π

p
2π

Z
∞

0

dωs

Z
∞

0

dωiχ
�2�:

×
X

mn, ot , rs
δ�kpmnx − ksotx − kirsx�δ�kpmny − ksoty − kirsy�

×
X

w�pF , pB

X
g�sF , sB

X
h�iF , iB

dwG	
sotG	

irsEwmnâ
2�
got â2�hrs

× exp��βwmn − β	got − β	hrs�dw∕2�
× sinc��βwmn − β	got − β	hrs�d∕2�δ�ωp − ωs − ωi�jvaci:

(18)

Here and in the following, we assume that βςFmn � βςmn and
βςBmn � −βςmn �ς � p, s, i�. From Eq. (18), the following re-
lation is satisfied in this process of parametric down-conversion:

ωp � ωs � ωi : (19)

We are interested only in the second term of jψiouts,β,i,γ and the
first term, vacuum state jvaci, can be neglected. Substituting
Eq. (9) into Eq. (18), we can express operators â2vF and â2vB
in terms of operators â4vF and â0vB . Then the second term
jψi�2�s,β,i,γ of jψiouts,β,i,γ can be divided into the following four parts:

jψi�2�s,β,i,γ � jψFF
s,β,i,γi � jψFB

s,β,i,γi � jψBF
s,β,i,γi � jψBB

s,β,i,γi, (20)

where

jψFF
s,β,i,γi �

Z
∞

0

dωs

Z
∞

0

dωi �ϕFF �ωs,ωi�â4�sF00,β�ωs�

× â4�iF00,γ�ωi�δ�ωp − ωs − ωi��jvaci, (21a)

jψFB
s,β,i,γi �

Z
∞

0

dωs

Z
∞

0

dωi �ϕFB�ωs,ωi�â4�sF00,β�ωs�

× â0�iF00,γ�ωi�δ�ωp − ωs − ωi��jvaci, (21b)

jψBF
s,β,i,γi �

Z
∞

0

dωs

Z
∞

0

dωi �ϕBF �ωs,ωi�â0�sF00,β�ωs�

× â4�iF00,γ�ωi�δ�ωp − ωs − ωi��jvaci, (21c)

jψBB
s,β,i,γi �

Z
∞

0

dωs

Z
∞

0

dωi �ϕBB�ωs,ωi�â0�sF00,β�ωs�

× â0�iF00,γ�ωi�δ�ωp − ωs − ωi��jvaci, (21d)

with
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ϕFF �ωs,ωi�

� −
i
ℏ
ε0B

ffiffiffiffiffi
2π

p
2πχ�2�:

X
mn, ot , rs

δ�kpmnx − ksotx − kirsx�

× δ�kpmny − ksoty − kirsy� exp��βwmn − β	got − β	hrs�dw∕2�
×
X
w�pF
w�pB

X
g�sF�b�11�
g�sB�b�21�

X
h�iF�c�11�
h�iB�c�21�

dw × G	
sotG	

irsEwmn�Fsb�	ot,00�Fic�	rs,00

× sinc��βwmn − β	got − β	hrs�dw∕2�, (22a)

ϕFB�ωs,ωi�

� −
i
ℏ
ε0B

ffiffiffiffiffi
2π

p
2πχ�2�:

X
mn, ot , rs

δ�kpmnx − ksotx − kirsx�

× δ�kpmny − ksoty − kirsy� exp��βwmn − β	got − β	hrs�dw∕2�
×
X
w�pF
w�pB

X
g�sF �b�11�
g�sB�b�21�

X
h�iF �c�12�
h�iB�c�22�

dw × G	
sotG	

irsEwmn�Fsb�	ot,00�Fic�	rs,00

× sinc��βwmn − β	got − β	hrs�dw∕2�, (22b)

ϕBF �ωs,ωi�

� −
i
ℏ
ε0B

ffiffiffiffiffi
2π

p
2πχ�2�:

X
mn, ot , rs

δ�kpmnx − ksotx − kirsx�

× δ�kpmny − ksoty − kirsy� exp��βwmn − β	got − β	hrs�dw∕2�
×
X
w�pF
w�pB

X
g�sF�b�12�
g�sB�b�22�

X
h�iF�c�11�
h�iB�c�21�

dw × G	
sotG	

irsEwmn�Fsb�	ot,00�Fic�	rs,00

× sinc��βwmn − β	got − β	hrs�dw∕2�, (22c)

ϕBB�ωs,ωi�

� −
i
ℏ
ε0B

ffiffiffiffiffi
2π

p
2πχ�2�:

X
mn, ot , rs

δ�kpmnx − ksotx − kirsx�

× δ�kpmny − ksoty − kirsy� exp��βwmn − β	got − β	hrs�dw∕2�
×
X
w�pF
w�pB

X
g�sF�b�12�
g�sB�b�22�

X
h�iF�c�12�
h�iB�c�22�

dw × G	
sotG	

irsEwmn�Fsb�	ot,00�Fic�	rs,00,

× sinc��βwmn − β	got − β	hrs�dw∕2�, (22d)

where ϕFF �ωs,ωi� represents the probability amplitude that
a photon pair occurs signal-forward and idler-forward,
ϕFB�ωs,ωi� corresponds to signal-forward and idler-backward,
ϕBF �ωs,ωi� to signal-backward and idler-forward, and
ϕBB�ωs,ωi� to signal-backward and idler-backward. Here, for-
ward and backward mean that the waves propagate down and
up, respectively; the superscripts FF , FB, BF , and BB re-
present the marks for four kinds of modes, respectively. We
only consider the contribution of the special terms â4vF00,α and
â0vB00,α of the operator matrixes â4vF and â0vB (ν � s, i) to the
probability amplitudes, because these terms correspond to
the photons radiated from the three-layer structure without
decay. Then jϕhk�ωs,ωi�j2 (h � F ,B, k � F ,B) can be ex-
pressed as

jϕhk�ωs,ωi�j2 � f �ωs,ωi�δ2�ωp − ωs − ωi�

� lim
T→∞

2T
2π

f �ωs,ωi�δ�ωp − ωs − ωi�, (23)

with

f �ωs,ωi� � �2π�3∕2
�
ε0B
ℏc

�
2

jϕ�ωs,ωi�j2 (24)

and

ϕ�ωs,ωi� �
X

mn, ot , rs

χ�2�: exp��βwmn − β	got − β	hrs�dw∕2�

×
X
w�pF
w�pB

X
g�sF �b�hp�
g�sB�b�hq�

X
h�iF �c�kp�
h�iB�c�kq�

dw × G	
sotG	

irsEwmn�Fsb�	ot ,00�Fic�	rs,00

�Fp � 11, Fq � 21,Bp � 12,Bq � 22�, (25)

where the period of nonlinear interaction goes from −T to T .
The expressions for the above physical quantities must be nor-
malized by 2T, which indicates that 2T ∕2π will be replaced by
1∕2π in the calculation.

After the output states are obtained, the generation rate of
correlated photon pairs can be analyzed. Thus, we define a
quantityNhk

s,i �ωs,ωi� that describes the number of photon pairs
that have a signal photon at the frequency ωs and its twin idler
photon at the frequency ωi in the mode hk as follows:

Nhk
s,i �ωs,ωi� � hψhk

s,β,i,γjn̂sh,β�ωs�n̂ik,γ�ωi�jψhk
s,β,i,γi, (26)

where the density operators of photons n̂sh,β�ωs� and n̂ik,γ�ωi�
are defined as

n̂sh,α�ωs� � â†sh00,αâsh00,α, (27a)

n̂ik,α�ωi� � â†ik00,αâik00,α, (27b)

with

âgF00,α � â4gF00,α, (28a)

âgB00,α � â0gB00,α, g � s, i: (28b)

Combining Eqs. (21) and (23), the quantity Nhk
s,i �ωs,ωi� can

be written as

Nhk
s,i �ωs,ωi� � jϕhk�ωs,ωi�j2: (29)

Then we introduce Nhk
s �ωs� to describe the number of signal

photons at the frequency ωs in the mode hk; it can be expressed
in the following form:

Nhk
s �ωs� �

Z
∞

0

dωijϕhk�ωs,ωi�j2: (30)

Sometimes, the energy spectrum of the signal field Sh,ks �ωs� is
easy to be measured from the experimental view and is deter-
mined by the following expression:

Sh,ks �ωs� � ℏωsN h,k
s �ωs� � ℏωs

Z
∞

0

dωijϕhk�ωs,ωi�j2.

(31)

Inserting Eq. (23) into Eqs. (30) and (31), Nhk
s �ωs� and

Sh,ks �ωs� can be expressed as
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Nh,k
s �ωs� �

1

2π
f �ωs, �ωp − ωs��, (32)

Sh,ks �ωs� �
ℏωs

2π
f �ωs, �ωp − ωs��: (33)

Based on Eqs. (32) and (33), the mean number of photon pairs
and the energy spectrum of the signal field can be obtained
easily by the numerical calculations.

3. RESULTS AND DISCUSSION

In this section, we present numerical results for the efficiency of
the photon-pair generation from the three-layer structure. In
the following calculations, we take silicon nitride Si3N4 as a
component of the photonic crystal slab and ZnSe as the
material of the dielectric slab; their relative permittivities are
taken as εp � 4.0 and εs � 6.0516 [49]. The second-order
nonlinear susceptibility of the monolayer WS2 is chosen to be
χ�2� � 100 pm∕V, which is compatible with the results in
Ref. [50], and the second nonlinear effects of Si3N4 and ZnSe
can be neglected. We choose WS2 as the two-dimensional
material because of its large second nonlinear susceptibility [42].

Figures 2(a)–2(c) show the transmission (t), reflection (r),
and absorption (a) for the three-layer structure as a function of
the wavelength; Figures 2(d)–2(f ) correspond to the transmis-
sion (t 0), reflection (r 0), and absorption (a 0) for the same struc-
ture, respectively. The parameters are assumed to be the
following: r � 0.2l , d 1 � 1.0l , d 2 � 1.7l , and l � 700 nm,
and the angle of the incident electromagnetic wave is taken
as 0°.

It is clearly seen that many sharp resonant peaks appear,
which correspond to BICs. The spectra on the left do not
coincide with those on the right. The phenomenon originates
from the non-Hermitian characteristics of the structure due to
the losses of absorption and radiation [4]. The energy conser-
vation law t � r � a � 1 is satisfied for the t, r, and a, which
are determined by the scattering matrix Q . The corresponding
energy conservation law t 0 � r 0 � a 0 � 1 is also satisfied for t 0,
r 0, and a 0, which are obtained by the inverse scattering matrix
Q−1	. The t , r, and a vary between 0 and 1, but t 0 and r 0 may
be greater than 1 and a 0 may be less than −1. This is because the
inverse scattering matrix Q−1	 describes the electromagnetic
field being radiated from the three-layer structure, whereas
the scattering matrix Q represents the electromagnetic field
being absorbed by the structure.

In the following, we study the effect of the BIC on the
second-harmonic generation (SHG) and photon-pair gene-
ration from the designed three-layer structure. As shown in
Figs. 2(c) and 2(f ) by the arrows, we take one BIC determined
by the scattering matrix, which is located at 1555.0222 nm,
and another BIC determined by the inverse scattering matrix,
which is located at 1499.254 nm.

Figures 3(a) and 3(b) display the corresponding SHG con-
versions as a function of the wavelength of the pump field in
different frequency regions. For comparison, the corresponding
SHG conversion from the freestanding monolayer WS2 is rep-
resented by dashed lines. The incident angle and intensity of
the pump field are taken as 0° and 100 MW∕cm2. It is seen
from Fig. 3(a) that resonant peaks of the downward and up-
ward second-harmonic waves appear and are located at the

Fig. 2. (a), (b), and (c) show the transmission (t), reflection (r), and
absorption (a) spectra for the three-layer structure as shown in Fig. 1,
respectively. (d), (e) and (f ) display the corresponding transmission
(t 0), reflection (r 0), and absorption (a 0) spectra, respectively.

Fig. 3. (a) and (b) describe the downward (black line) and upward
(red line) SHG conversion from the three-layer structure as a function
of the wavelength of the pump field in different regions, and the
corresponding SHG conversions from the freestanding monolayer
WS2 are shown by the corresponding dashed lines. (c) and (d) exhibit
energy SFFs (black line), SFBs (red line), SBFs (green line), and SBBs (blue
line) of the three-layer structure as a function of the wavelength of the
signal field in different regions, the corresponding energy spectra of the
freestanding monolayer WS2 are represented by the dashed lines, and
the wavelength of the pump field is λp � 749.627 nm. The param-
eters are assumed as follows: d 1 � 1.00l , d 2 � 1.70l , r � 0.20l ,
and l � 700 nm.
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wavelength λp � 1555.0222 nm, which corresponds to the
wavelength of the BIC determined by the scattering matrix.
The efficiency of SHG in the monolayer WS2 is enhanced by
about 4 orders of magnitude. In contrast, in Fig. 3(b) we can-
not observe the resonant peaks near the BIC determined by the
inverse scattering matrix.

In Figs. 3(c) and 3(d), we plot energy spectra for SFFs , SFBs ,
SBFs , and SBBs of the three-layer structure as a function of the
wavelength λs of the signal field. The pump field with the in-
tensity 100 MW∕cm2 is incident perpendicularly to the struc-
ture (θp � 0°), and the angle of the signal field is taken as
θs � 0°. In order to make sure the signal and idler fields are
located at the resonant states simultaneously, the wavelength
of the pump field is fixed at λp � 749.627 nm. For compari-
son, the corresponding energy spectra of the freestanding
monolayer WS2 are also shown by the dashed lines. Because
of the ultrathin thickness, the downward and upward SHG
conversions from the freestanding monolayer are nearly equal,
the energy spectra in four modes of the freestanding monolayer
WS2 are also nearly equal, and thus the dashed lines almost
coincide with each other.

From Fig. 3(c), we can see that there is no resonant peak
when the signal field is located at the BIC determined by
the scattering matrix. The resonant peaks of energy spectra ap-
pear at λs � 1499.254 nm � 2λp in Fig. 3(d), where the signal
field is located at the BIC determined by the inverse scattering
matrix. The corresponding wavelength of the idler field is
λi � λs, which is obtained from the energy conservation con-
dition ωp � ωs � ωi, and the radiated angle of the idler field is
θi � 0°, which is determined by the phase-matching condition
as shown in Eq. (11), so the idler field is also located at the BIC
determined by the inverse scattering matrix. Comparing these
results with those from the freestanding monolayer WS2, the
energies of the signal field from the three-layer structure are
enhanced by about 4 orders of magnitude.

These phenomena are different from some previous stu-
dies on the enhancement of photon-pair generation in one-
dimensional photonic crystal [12,13,18], which is determined
by the scattering matrix Q . As can be seen from Eq. (9), the
annihilation operators of the generated fields are closely related
to Q−1	, and thus the corresponding creation operators are
connected by Q−1	. In Fig. 2, it is shown that the photon-pair
generation is enhanced in the parametric down-conversion if
the signal and idler fields are located at the BIC determined
by the inverse scattering matrix Q−1	. This can be understood
by the distributions of the electric field amplitude in the structure.

In Figs. 4(a) and 4(b), we plot the electric field enhance-
ments jEWj (black line) and jE 0

Wj (red line) determined by
the scattering matrix and inverse scattering matrix of the
three-layer structure as a function of the wavelength. The
strength of the incident electrical field is assumed as 1, and here
we neglect the nonlinear effect on the field distribution. It is
clearly observed at λ � 1555.0222 nm that a resonant peak
appears for jEWj, while there is no resonant peak for jE 0

Wj,
so at this location the SHG [Fig. 3(a)] is enhanced. It is also
clearly seen at λ � 1499.254 nm that the resonant peak
appears for jE 0

Wj, while there is no resonant peak for jEWj,
so at this location the efficiency of photon-pair generation

[Fig. 3(d)] is improved. Because the scattering matrix Q is
different from the inverse scattering matrix Q−1	, the enhance-
ments jEWj and jE 0

Wj play different roles in the two processes.
The corresponding absorption spectra a (a 0) in the structure are
also shown in Figs. 4(c) and 4(d) [Figs. 4(e) and 4(f )]. It is seen
clearly in Figs. 4(c) and 4(f ) that there is a resonant peak of
absorption a (a 0), which originates from the obvious resonant
peak of the field jEWj (jE 0

Wj). These phenomena should be
attributed to non-Hermitian behavior of the structure due to
the losses of absorption and radiation.

In addition to high generation rate, the signals generated in
such a way have narrowed relative line width due to the appear-
ance of the BICs [29]. The relative line width can be described
by Δλ∕λΓ in the signal spectrum; here λΓ is the center wave-
length of the peak and Δλ represents the full width at half-
maximum of the peak. For example, Δλ∕λΓ is 0.0181% in
Fig. 3(a) and 0.0268% in Fig. 3(d), which is much smaller than
the relative line width presented in Ref. [51].

So far, the discussions are only for the case with the incident
angle 0° of the pump field. In fact, the above phenomena also
depend on the angle of the pump field. Figure 5(b) displays the
energy spectra SFFs of the three-layer structure as a function of
λs at various radiated angle θs; the intensity of the pump field
I p � 100 MW∕cm2 and θp � 0° are taken, and the radiated

Fig. 4. (a) and (b) exhibit the electric field enhancements jEW j
(black line) and jE 0

W j (red line) determined by the scattering matrix
and inverse scattering matrix of the three-layer structure as a function
of the wavelength. (c) and (d) describe the absorption a of the three-
layer structure as a function of the wavelength in different regions; the
corresponding absorption a of the freestanding monolayer WS2 is
shown by the corresponding red lines. (e) and (f ) show the absorption
a 0 of the three-layer structure as a function of the wavelength in differ-
ent regions; the corresponding absorption a 0 of the freestanding mono-
layer WS2 is represented by the red lines.

Research Article Vol. 7, No. 3 / March 2019 / Photonics Research 347



angle θi is equal to θi � −θs according to the phase matching
condition. The wavelength of the pump field is chosen to make
sure the signal and idler fields are located at the BICs deter-
mined by the inverse scattering matrix simultaneously. For
comparison, the corresponding energy spectra of the free-
standing monolayer WS2 are provided by the dashed lines.
It is clearly seen that the resonant peaks appear at various radi-
ated angles θs and are redshifted with the increase of θs.
The relative line widths of the resonant peaks at the three
different angles are 0.02324%, 0.04288%, and 0.06858%,
respectively.

This means that narrowed relative line width of the gener-
ated signal is observed again. In order to disclose the physical
origin of the phenomena, in Fig. 5(a) we plot the corresponding
absorption a 0 of the three-layer structure as a function of the
wavelength λ. The resonant peaks in absorption spectra corre-
spond to the resonant peaks of the energy SFFs . These show
again that the photon-pair generation can be enhanced dra-
matically if the signal and idler fields are located at the BIC
simultaneously. The narrowed relative line width of the gener-
ated signal can be understood from the narrowed relative line
width of absorption a 0.

The above phenomena not only depend on the incident an-
gle of the pump field; they are also sensitive to the radiated
angle of the signal field. Figure 6(b) describes the energy
SFFs , SFBs , SBFs , and SBBs of the three-layer structure as a func-
tion of the radiated angle θs, the pump field is incident nor-
mally, and the wavelengths of the pump and signal fields are
chosen at λp � 749.627 nm and λs � 1499.254 nm corre-
sponding to the maximum in Fig. 3(d). We find that the energy
SFFs decreases dramatically with the increase of the radiated an-
gle θs and also nearly arrives at the minimum at 1°; this means
that the present structure can be used to generate photon pairs
with outstanding directivity. Such a phenomenon also corre-
sponds to the absorption a 0 of the three-layer structure as a
function of the incident angle as shown in Fig. 6(a). This is
because the BIC is very sensitive to the incident angle.

In the following, we provide the calculated results of the
energy SFFs as a function of the wavelength λs for different
tunable variables of the system. Figure 7 displays these results.
Figures 7(a)–7(c) correspond to the cases with various radii of
the air hole and the thicknesses of the photonic crystal slab and
dielectric slab, respectively. The wavelengths of the pump fields
are also taken to make sure the signal and idler fields are located
at the BICs determined by the inverse scattering matrix simul-
taneously. For comparison, the corresponding energy spectra of
the freestanding monolayer WS2 are also represented by the
dashed lines. The location of the energy peak is blueshifted
with the increase of the radius r as shown in Fig. 7(a) and red-
shifted with the increase of the thickness d 2 of the dielectric
slab as shown in Fig. 7(c). The location of the energy peak is
nearly unchanged after tuning the thickness d 1 of the photonic
crystal slab as shown in Fig. 7(b). The peak value can be tuned
by changing the parameters r, d 1, and d 2, and the enhance-
ment arrives at about 7 orders when the radius of the air hole
is taken as r � 0.10l .

In addition, we would like to point out that the generation
rate of correlated photon pairs also depends on the azimuthal an-
gle. Here the azimuthal angle is defined as the angle between the
electric field and the x axis when the corresponding electromag-
netic wave is incident or radiated normally. In the above calcu-
lations, the pump field is polarized along the y direction; that is to
say, the azimuthal angle is fixed at ϕ � 90°, and the polarizations
of the signal and idler fields are chosen along the y direction.

Figure 7(d) shows the energy SFFs for different polarizations
of generated photons as a function of the azimuthal angle ϕ of
the normal pump field, and the signal and idler fields are also
radiated normally. A period modulation in the spectra with
period 180° is observed clearly. As ϕ is increased from 0° to
360°, the polarization of the pump electric field is rotated anti-
clockwise from the x direction back to the original direction,
and when the azimuthal angle is taken at ϕ � 0°, the pump
electric field is polarized along the x direction. In such a case,
the energies SFFs resulting from the second-order nonlinear
polarization χ�2�yyy and χ�2�yxx are the minima, and those resulting
from the second-order nonlinear polarization χ�2�xyx and χ�2�xxy are

Fig. 6. (a) The absorption a 0 of the three-layer structure as a func-
tion of the incident angle θ. (b) The energy spectra SFFs (black line),
SFBs (red line with circle), SBFs (green line with triangle), and SBBs (blue
line) of the three-layer structure as a function of the radiated angle θs of
the signal field. The wavelength of the pump field, which is incident
normally, is taken as λp � 749.627 nm, and the wavelengths of the
signal and idler fields are fixed at λs � λi � 2λp � 1499.254 nm,
the other parameters are assumed as follows: d 1 � 1.00l , d 2 � 1.70l ,
r � 0.20l , and l � 700 nm.

Fig. 5. (a) The absorption a 0 of the three-layer structure as a func-
tion of the wavelength λ at various incident angles; the black, red, and
green lines are the spectra at the incident angles θ � 5°, 10°, and 15°,
respectively. (b) The energy spectra SFFs of the three-layer structure as a
function of the wavelength λs at various radiated angles of the signal
field θs � 5°, 10°, and 15°; the corresponding energy spectra of the
freestanding monolayer WS2 are denoted by the dashed lines. The
wavelengths of the pump fields which are incident normally are taken
as λp � 774.808 nm, 797.856 nm, and 820.341 nm for various θs ,
respectively; the other parameters are assumed as follows: d 1 � 1.00l ,
d 2 � 1.70l , r � 0.20l , and l � 700 nm.
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the maxima. Thus, the generation efficiencies of signal and idler
fields with polarizations yy and xx reach the minima, and those
with polarizations yx and xy reach the maxima. The corre-
sponding phenomena can also be found for the case with
the azimuthal angle ϕ � 90°. This means that we can also uti-
lize this property to tune the generation rate of the correlated
photon pairs in a large range by changing the azimuthal angle.

4. SUMMARY

In summary, we have designed the photonic crystal slab-WS2-
slab structures to improve the generation rate of correlated pho-
ton pairs. In order to calculate the generation rate of correlated
photon pairs in such structures, the rigorous quantum theory of
spontaneous parametric down-conversion with the plane wave
expansion method has been developed. The mean number of
output photon pairs and the signal field energy spectra have
been calculated. The BIC of radiation modes in the monolayer
WS2 has been demonstrated. We have found that the gener-
ation efficiency of correlated photon pairs is greatly improved

if the signal and idler fields are located at the BIC determined
by the inverse scattering matrix of the structure. This is in con-
trast to the previous investigations on the enhancement of
photon-pair generation in some nanostructures such as pho-
tonic crystals, which is determined by the scattering matrix.
The effect of the structure parameters on the generation rate of
correlated photon pairs has also been discussed. It is found that
the generation rate of the correlated photon pair can be im-
proved by 7 orders of magnitude in some designed structures.
The generated quantum signals are sensitive to the wavelength
and exhibit narrowed relative line width and directivity, which
is very beneficial for the quantum information processing.
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