• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617013 (2022)
Shunwu Xu1、2, Jiajia He2, Gangqin Xi2, Lianhuang Li2, Xiahui Han2, Liqin Zheng2、*, and Jianxin Chen2、**
Author Affiliations
  • 1School of Electronic and Mechanical Engineering, Fujian Polytechnic Normal University, Fuqing, Fujian 350300, China
  • 2Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou , Fujian 350007, China
  • show less
    DOI: 10.3788/LOP202259.0617013 Cite this Article Set citation alerts
    Shunwu Xu, Jiajia He, Gangqin Xi, Lianhuang Li, Xiahui Han, Liqin Zheng, Jianxin Chen. Application Progress of Multiphoton Microscopy in Prognostic Prediction of Breast Tumor Microenvironments[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617013 Copy Citation Text show less
    References

    [1] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [2] Aparna D U, Mazumder N. Types of advanced optical microscopy techniques for breast cancer research: a review[J]. Lasers in Medical Science, 33, 1849-1858(2018).

    [3] Matsui T, Mizuno H, Sudo T et al. Non-labeling multiphoton excitation microscopy as a novel diagnostic tool for discriminating normal tissue and colorectal cancer lesions[J]. Scientific Reports, 7, 6959(2017).

    [4] Sun T Y, Haberman A M, Greco V. Preclinical advances with multiphoton microscopy in live imaging of skin cancers[J]. Journal of Investigative Dermatology, 137, 282-287(2017).

    [5] Jain M, Robinson B D, Shevchuk M M et al. Multiphoton microscopy: a potential intraoperative tool for the detection of carcinoma in situ in human bladder[J]. Archives of Pathology & Laboratory Medicine, 139, 796-804(2015).

    [6] Zhang Z Y, Wang M X, Liu Z H et al. Application of second harmonic generation in biomedical imaging[J]. Chinese Journal of Lasers, 47, 0207008(2020).

    [7] Pavlova I P, Nair S S, Lundon D et al. Multiphoton microscopy for identifying collagen signatures associated with biochemical recurrence in prostate cancer patients[J]. Journal of Personalized Medicine, 11, 1061(2021).

    [8] Pham T, Banerjee B, Cromey B et al. Feasibility of multimodal multiphoton microscopy to facilitate surgical margin assessment in pancreatic cancer[J]. Applied Optics, 59, G1-G7(2020).

    [9] Ustione A, Piston D W. A simple introduction to multiphoton microscopy[J]. Journal of Microscopy, 243, 221-226(2011).

    [10] Bloembergen N, Pershan P S. Light waves at the boundary of nonlinear media[J]. Physical Review, 128, 606-622(1962).

    [11] Guo Y W, Li Y, Ma Z W. Research on symmetry of BaTiO3 film based on second-harmonic generation technology[J]. Acta Optica Sinica, 41, 0619001(2021).

    [12] Rejon C, McCaffrey L[M]. Cell polarity in mammary gland morphogenesis and breast cancer, 187-207(2015).

    [13] Hanahan D, Coussens L M. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 21, 309-322(2012).

    [14] Sun Z, Wang S H, Zhao R C. The roles of mesenchymal stem cells in tumor inflammatory microenvironment[J]. Journal of Hematology & Oncology, 7, 14(2014).

    [15] Han X X, Burke R M, Zettel M L et al. Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma[J]. Optics Express, 16, 1846-1859(2008).

    [16] Burke K, Tang P, Brown E. Second harmonic generation reveals matrix alterations during breast tumor progression[J]. Journal of Biomedical Optics, 18, 031106(2013).

    [17] Natal R A, Paiva G R, Pelegati V B et al. Exploring collagen parameters in pure special types of invasive breast cancer[J]. Scientific Reports, 9, 7715(2019).

    [18] Provenzano P P, Eliceiri K W, Campbell J M et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion[J]. BMC Medicine, 4, 38(2006).

    [19] Conklin M W, Eickhoff J C, Riching K M et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma[J]. The American Journal of Pathology, 178, 1221-1232(2011).

    [20] Xi G Q, Guo W H, Kang D Y et al. Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients[J]. Theranostics, 11, 3229-3243(2021).

    [21] Sun Y J, Qu Z Y, Li Y H. Study on target detection of breast tumor based on improved mask R-CNN[J]. Acta Optica Sinica, 41, 0212004(2021).

    [22] Niu X M, Lü X Q, Gu Y et al. Breast cancer histopathological image classification based on improved ResNeXt[J]. Laser & Optoelectronics Progress, 57, 221021(2020).

    [23] Li Z X, Song T, Ge M F et al. Breast cancer classification from histopathological images based on improved inception model[J]. Laser & Optoelectronics Progress, 58, 0817001(2021).

    [24] Falzon G, Pearson S, Murison R. Analysis of collagen fibre shape changes in breast cancer[J]. Physics in Medicine and Biology, 53, 6641-6652(2008).

    [25] Bredfeldt J S, Liu Y M, Conklin M W et al. Automated quantification of aligned collagen for human breast carcinoma prognosis[J]. Journal of Pathology Informatics, 5, 28(2014).

    [26] Majeed H, Okoro C, Kajdacsy-Balla A et al. Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging[J]. Journal of Biomedical Optics, 22, 046004(2017).

    [27] Natal R A, Vassallo J, Paiva G R et al. Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer[J]. Tumour Biology, 40, 1010428318770953(2018).

    [28] Gole L, Yeong J, Lim J C T et al. Quantitative stain-free imaging and digital profiling of collagen structure reveal diverse survival of triple negative breast cancer patients[J]. Breast Cancer Research, 22, 42(2020).

    [29] Sprague B L, Vacek P M, Mulrow S E et al. Collagen organization in relation to ductal carcinoma in situ pathology and outcomes[J]. Cancer Epidemiology, Biomarkers & Prevention, 30, 80-88(2021).

    [30] Xi G Q, Qiu L D, Xu S Y et al. Computer-assisted quantification of tumor-associated collagen signatures to improve the prognosis prediction of breast cancer[J]. BMC Medicine, 19, 273(2021).

    [31] Salgado R, Denkert C, Demaria S et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014[J]. Annals of Oncology, 26, 259-271(2015).

    [32] Denkert C, von Minckwitz G, Darb-Esfahani S et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. The Lancet Oncology, 19, 40-50(2018).

    [33] Dieci M V, Mathieu M C, Guarneri V et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials[J]. Annals of Oncology, 26, 1698-1704(2015).

    [34] He J J, Fu F M, Wang W et al. Prognostic value of tumour-infiltrating lymphocytes based on the evaluation of frequency in patients with oestrogen receptor-positive breast cancer[J]. European Journal of Cancer, 154, 217-226(2021).

    [35] Catherine L, Gustavo A, Wilks J A et al. Perineural invasion in cancer: a review of the literature[J]. Cancer, 115, 3379-3391(2009).

    [36] D’Esposito V, Liguoro D, Ambrosio M R et al. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5[J]. Oncotarget, 7, 24495-24509(2016).

    [37] Richards C H, Mohammed Z, Qayyum T et al. The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review[J]. Future Oncology, 7, 1223-1235(2011).

    Shunwu Xu, Jiajia He, Gangqin Xi, Lianhuang Li, Xiahui Han, Liqin Zheng, Jianxin Chen. Application Progress of Multiphoton Microscopy in Prognostic Prediction of Breast Tumor Microenvironments[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617013
    Download Citation