• Photonics Research
  • Vol. 10, Issue 7, 1552 (2022)
Dandan Ge1, Ali Issa1, Safi Jradi1、3、*, Christophe Couteau1, Sylvie Marguet2, and Renaud Bachelot1、4、*
Author Affiliations
  • 1Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS EMR 7004, Université de Technologie de Troyes, 12 rue Marie Curie, 10004, Troyes Cedex, France
  • 2Université Paris Saclay, CEA, CNRS, NIMBE, F-91191, Gif sur Yvette, France
  • 3e-mail: safi.jradi@utt.fr
  • 4e-mail: renaud.bachelot@utt.fr
  • show less
    DOI: 10.1364/PRJ.455712 Cite this Article Set citation alerts
    Dandan Ge, Ali Issa, Safi Jradi, Christophe Couteau, Sylvie Marguet, Renaud Bachelot. Advanced hybrid plasmonic nano-emitters using smart photopolymer[J]. Photonics Research, 2022, 10(7): 1552 Copy Citation Text show less
    References

    [1] F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, J. A. Capobianco. Temperature sensing using fluorescent nanothermometers. ACS Nano, 4, 3254-3258(2010).

    [2] J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, E. Waks. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett., 17, 7394-7400(2017).

    [3] X. Feng, Y. Li, X. He, H. Liu, Z. Zhao, R. T. K. Kwok, M. R. J. Elsegood, J. W. Y. Lam, B. Z. Tang. A substitution-dependent light-up fluorescence probe for selectively detecting Fe3+ ions and its cell imaging application. Adv. Funct. Mater., 28, 1802833(2018).

    [4] T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, M. H. Mikkelsen. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun., 6, 7788(2015).

    [5] G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, M. H. Mikkelsen. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics, 8, 835-840(2014).

    [6] Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, S. Strauf. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nat. Commun., 8, 1413(2017).

    [7] H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, J. Wenger. Plasmonic antennas for directional sorting of fluorescence emission. Nano Lett., 11, 2400-2406(2011).

    [8] P. Anger, P. Bharadwaj, L. Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96, 113002(2006).

    [9] H. Leng, B. Szychowski, M.-C. Daniel, M. Pelton. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun., 9, 4012(2018).

    [10] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).

    [11] S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, M. Orrit. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. ACS Nano, 8, 4440-4449(2014).

    [12] K. J. Russell, T.-L. Liu, S. Cui, E. L. Hu. Large spontaneous emission enhancement in plasmonic nanocavities. Nat. Photonics, 6, 459-462(2012).

    [13] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [14] T. B. Hoang, G. M. Akselrod, M. H. Mikkelsen. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett., 16, 270-275(2016).

    [15] T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, C. Yan. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett., 9, 3896-3903(2009).

    [16] S.-Y. Liu, L. Huang, J.-F. Li, C. Wang, Q. Li, H.-X. Xu, H.-L. Guo, Z.-M. Meng, Z. Shi, Z.-Y. Li. Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods. J. Phys. Chem. C, 117, 10636-10642(2013).

    [17] A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, O. Benson. Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states. Nano Lett., 14, 2623-2627(2014).

    [18] H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, B. Hecht. Near-field strong coupling of single quantum dots. Sci. Adv., 4, eaar4906(2018).

    [19] M. P. Busson, B. Rolly, B. Stout, N. Bonod, S. Bidault. Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA. Nat. Commun., 3, 962(2012).

    [20] X. Lan, X. Zhou, L. A. McCarthy, A. O. Govorov, Y. Liu, S. Link. DNA-enabled chiral gold nanoparticle–chromophore hybrid structure with resonant plasmon–exciton coupling gives unusual and strong circular dichroism. J. Am. Chem. Soc., 141, 19336-19341(2019).

    [21] A. T. M. Yeşilyurt, J.-S. Huang. Emission manipulation by DNA origami-assisted plasmonic nanoantennas. Adv. Opt. Mater., 9, 2100848(2021).

    [22] M. Loretan, I. Domljanovic, M. Lakatos, C. Rüegg, G. P. Acuna. DNA origami as emerging technology for the engineering of fluorescent and plasmonic-based biosensors. Materials, 13, 2185(2020).

    [23] K. Hübner, M. Pilo-Pais, F. Selbach, T. Liedl, P. Tinnefeld, F. D. Stefani, G. P. Acuna. Directing single-molecule emission with DNA origami-assembled optical antennas. Nano Lett., 19, 6629-6634(2019).

    [24] R. Chikkaraddy, V. A. Turek, N. Kongsuwan, F. Benz, C. Carnegie, T. van de Goor, B. de Nijs, A. Demetriadou, O. Hess, U. F. Keyser, J. J. Baumberg. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Lett., 18, 405-411(2018).

    [25] H. Zhang, M. Li, K. Wang, Y. Tian, J.-S. Chen, K. T. Fountaine, D. DiMarzio, M. Liu, M. Cotlet, O. Gang. Polarized single-particle quantum dot emitters through programmable cluster assembly. ACS Nano, 14, 1369-1378(2020).

    [26] G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, P. Tinnefeld. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science, 338, 506-510(2012).

    [27] J. Heintz, N. Markešević, E. Y. Gayet, N. Bonod, S. Bidault. Few-molecule strong coupling with dimers of plasmonic nanoparticles assembled on DNA. ACS Nano, 15, 14732-14743(2021).

    [28] C. Shen, X. Lan, X. Lu, T. A. Meyer, W. Ni, Y. Ke, Q. Wang. Site-specific surface functionalization of gold nanorods using DNA origami clamps. J. Am. Chem. Soc., 138, 1764-1767(2016).

    [29] F. Wang, S. Cheng, Z. Bao, J. Wang. Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Adv. Opt. Mater., 52, 10344-10348(2013).

    [30] I. Tijunelyte, I. Kherbouche, S. Gam-Derouich, M. Nguyen, N. Lidgi-Guigui, M. L. de la Chapelle, A. Lamouri, G. Lévi, J. Aubard, A. Chevillot-Biraud, C. Mangeney, N. Felidj. Multi-functionalization of lithographically designed gold nanodisks by plasmon-mediated reduction of aryl diazonium salts. Nanoscale Horiz., 3, 53-57(2017).

    [31] V.-Q. Nguyen, Y. Ai, P. Martin, J.-C. Lacroix. Plasmon-induced nanolocalized reduction of diazonium salts. ACS Omega, 2, 1947-1955(2017).

    [32] P. Zijlstra, P. M. R. Paulo, K. Yu, Q.-H. Xu, M. Orrit. Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization. Angew. Chem. Int. Ed., 124, 8477-8480(2012).

    [33] D. Ge, S. Marguet, A. Issa, S. Jradi, T. H. Nguyen, M. Nahra, J. Béal, R. Deturche, H. Chen, S. Blaize, J. Plain, C. Fiorini, L. Douillard, O. Soppera, X. Q. Dinh, C. Dang, X. Yang, T. Xu, B. Wei, X. W. Sun, C. Couteau, R. Bachelot. Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field. Nat. Commun., 11, 3414(2020).

    [34] X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Béal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, R. Bachelot. Two-color single hybrid plasmonic nanoemitters with real time switchable dominant emission wavelength. Nano Lett., 15, 7458-7466(2015).

    [35] S. Mitiche, S. Marguet, F. Charra, L. Douillard. Near-field localization of single Au cubes: a group theory description. J. Phys. Chem. C, 121, 4517-4523(2017).

    [36] A. Issa, I. Izquierdo, M. Merheb, D. Ge, A. Broussier, N. Ghabri, S. Marguet, C. Couteau, R. Bachelot, S. Jradi. One strategy for nanoparticle assembly onto 1D, 2D, and 3D polymer micro and nanostructures. ACS Appl. Mater. Interfaces, 13, 41846-41856(2021).

    [37] J. de Torres, P. Ferrand, G. C. des Francs, J. Wenger. Coupling emitters and silver nanowires to achieve long-range plasmon-mediated fluorescence energy transfer. ACS Nano, 10, 3968-3976(2016).

    [38] C. Deeb, X. Zhou, R. Miller, S. K. Gray, S. Marguet, J. Plain, G. P. Wiederrecht, R. Bachelot. Mapping the electromagnetic near-field enhancements of gold nanocubes. J. Phys. Chem. C, 116, 24734-24740(2012).

    [39] K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, D. J. Hagan. Two-photon absorption cross-sections of common photoinitiators. J. Photochem. Photobiol. A, 162, 497-502(2004).

    [40] C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, P. Royer. Quantitative analysis of localized surface plasmons based on molecular probing. ACS Nano, 4, 4579-4586(2010).

    [41] C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, P. K. Jain. Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging. J. Phys. Chem. C, 117, 10669-10676(2013).

    [42] E. Fišerová, M. Kubala. Mean fluorescence lifetime and its error. J. Luminesc., 132, 2059-2064(2012).

    [43] B. Gökbulut, M. N. Inci. Enhancement of the spontaneous emission rate of Rhodamine 6G molecules coupled into transverse Anderson localized modes in a wedge-type optical waveguide. Opt. Express, 27, 15996-16011(2019).

    [44] K. E. Knowles, E. A. McArthur, E. A. Weiss. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots. ACS Nano, 5, 2026-2035(2011).

    [45] F. M. Gómez-Campos, M. Califano. Hole surface trapping in CdSe nanocrystals: dynamics, rate fluctuations, and implications for blinking. Nano Lett., 12, 4508-4517(2012).

    [46] O. Labeau, P. Tamarat, B. Lounis. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett., 90, 257404(2003).

    [47] P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertret, J.-P. Hermier. Bright and grey states in CdSe-CdS nanocrystals exhibiting strongly reduced blinking. Phys. Rev. Lett., 102, 136801(2009).

    [48] Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, R. Bachelot. 3D photoluminescent nanostructures containing quantum dots fabricated by two-photon polymerization: influence of quantum dots on the spatial resolution of laser writing. Adv. Mater. Technol., 4, 1800522(2019).

    [49] A. Khalid, K. Chung, R. Rajasekharan, D. W. M. Lau, T. J. Karle, B. C. Gibson, S. Tomljenovic-Hanic. Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification. Sci. Rep., 5, 11179(2015).

    [50] Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, Q. Xiong. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun., 5, 4953(2014).

    Dandan Ge, Ali Issa, Safi Jradi, Christophe Couteau, Sylvie Marguet, Renaud Bachelot. Advanced hybrid plasmonic nano-emitters using smart photopolymer[J]. Photonics Research, 2022, 10(7): 1552
    Download Citation