• Acta Optica Sinica
  • Vol. 43, Issue 21, 2122001 (2023)
Haisong Tang1、2, Xianglong Mao3、*, Zexin Feng1、2、**, and Haoran Li1、2
Author Affiliations
  • 1Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2MOE Key Laboratory of Optoelectronic Imaging Technology and Systems, Beijing Institute of Technology, Beijing 100081, China
  • 3The New Technology Laboratory of Space Photon Information, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi , China
  • show less
    DOI: 10.3788/AOS230880 Cite this Article Set citation alerts
    Haisong Tang, Xianglong Mao, Zexin Feng, Haoran Li. Monte Carlo Modeling Method for Surface Light Source[J]. Acta Optica Sinica, 2023, 43(21): 2122001 Copy Citation Text show less
    References

    [1] Chen Z M. Scientific computing: the third pillar in science and technology innovations?[J]. Bulletin of Chinese Academy of Sciences, 27, 161-166(2012).

    [2] Zhu S P. A brief report on scientific computing[J]. Physics, 38, 545-551(2009).

    [3] Schmidt T W, Novák J, Meng J et al. Path-space manipulation of physically-based light transport[J]. ACM Transactions on Graphics, 32, 129.

    [4] Liu B, Yuan Y, Li S et al. Simulation of light-field camera imaging based on ray splitting Monte Carlo method[J]. Optics Communications, 355, 15-26(2015).

    [5] Jakob W, Speierer S, Roussel N et al. DR.JIT: a just-in-time compiler for differentiable rendering[J]. ACM Transactions on Graphics, 41, 124.

    [6] Liang Y, Muhammad W, Hart G R et al. A general-purpose Monte Carlo particle transport code based on inverse transform sampling for radiotherapy dose calculation[J]. Scientific Reports, 10, 9808(2020).

    [7] Zeng X W, Zhang Y, Yang J X. Forward transports into scattering media by an improved polarized Monte Carlo program[J]. Acta Optica Sinica, 43, 1829001(2023).

    [8] Pattanaik S N, Mudur S P. Computation of global illumination in a participating medium by Monte Carlo simulation[J]. The Journal of Visualization and Computer Animation, 4, 133-152(1993).

    [9] Keller A. A quasi-monte Carlo algorithm for the global illumination problem in the radiosity setting[M]. Niederreiter H, Shiue P J S. Monte Carlo and quasi-monte Carlo methods in scientific computing, 106, 239-251(1995).

    [10] McCabe H. Markov chain monte Carlo methods for global illumination[D], 1-57(1999).

    [11] Laakom F, Raitoharju J, Iosifidis A et al. Monte Carlo dropout ensembles for robust illumination estimation[C](2021).

    [12] Veach E. Robust monte Carlo methods for light transport simulation[M], 29-70(1998).

    [13] Zhou J, Li J, Wang Q F et al. Optimized design of infrared opto-mechanical systems based on the spontaneous emission suppression[J]. Acta Optica Sinica, 35, 0322003(2015).

    [14] Yuan L, Wang B Y, Luo C et al. Simulation analysis of thermal effect of laser irradiation in infrared detection system[J]. High Power Laser and Particle Beams, 35, 021003(2023).

    [15] Palchetti L, Barucci M, Belotti C et al. Observations of the downwelling far-infrared atmospheric emission at the Zugspitze observatory[J]. Earth System Science Data, 13, 4303-4312(2021).

    [16] Sgheri L, Belotti C, Ben-Yami M et al. The FORUM end-to-end simulator project: architecture and results[J]. Atmospheric Measurement Techniques, 15, 573-604(2022).

    [17] Diaconis P, Holmes S, Shahshahani M. Sampling from a manifold[M]. Jones G, Shen X T. Advances in modern statistical theory and applications: a festschrift in honor of Morris L. Eaton, 10, 102-125(2013).

    [18] Baggenstoss P M. Uniform manifold sampling (UMS): sampling the maximum entropy PDF[J]. IEEE Transactions on Signal Processing, 65, 2455-2470(2017).

    [19] Zappa E, Holmes-Cerfon M, Goodman J. Monte Carlo on manifolds: sampling densities and integrating functions[J]. Communications on Pure and Applied Mathematics, 71, 2609-2647(2018).

    [20] Ye J F, Chen L, Li X H et al. Review of optical freeform surface representation technique and its application[J]. Optical Engineering, 56, 110901(2017).

    [22] Olver S, Townsend A. Fast inverse transform sampling in one and two dimensions[EB/OL]. https://arxiv.org/abs/1307.1223

    [23] Press W H, Teukolsky S A, Vetterling W T et al. Numerical recipes: the art of scientific computing[M], 155-167(2007).

    [24] Rogers D F. An introduction to NURBS: with historical perspective[M](2001).

    [25] Bingol O R, Krishnamurthy A. NURBS-Python: an open-source object-oriented NURBS modeling framework in Python[J]. SoftwareX, 9, 85-94(2019).

    [26] Virtanen P, Gommers R, Oliphant T E et al. SciPy 1.0: fundamental algorithms for scientific computing in Python[J]. Nature Methods, 17, 261-272(2020).

    [27] Nishino R, Loomis S H C. CuPy: a Numpy-compatible library for NVIDIA GPU calculations[EB/OL]. http://learningsys.org/nips17/assets/papers/paper_16.pdf

    Haisong Tang, Xianglong Mao, Zexin Feng, Haoran Li. Monte Carlo Modeling Method for Surface Light Source[J]. Acta Optica Sinica, 2023, 43(21): 2122001
    Download Citation