• Photonics Research
  • Vol. 10, Issue 7, 1543 (2022)
Qun Hao1、2, Chuanxun Chen1, Jie Cao1、2, Zhikuo Li1, and Yang Cheng1、2、*
Author Affiliations
  • 1Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
  • 2Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314003, China
  • show less
    DOI: 10.1364/PRJ.455331 Cite this Article Set citation alerts
    Qun Hao, Chuanxun Chen, Jie Cao, Zhikuo Li, Yang Cheng. Ultra-wide varifocal imaging with selectable region of interest capacity using Alvarez lenses actuated by a dielectric elastomer[J]. Photonics Research, 2022, 10(7): 1543 Copy Citation Text show less
    References

    [1] L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 442, 551-554(2006).

    [2] L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang. Variable-focus liquid microlenses and microlens arrays actuated by thermoresponsive hydrogels. Adv. Mater., 19, 401-405(2007).

    [3] S. Colburn, A. Zhan, A. Majumdar. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica, 5, 825-831(2018).

    [4] J. Lee, Y. Park, S. K. Chung. Multifunctional liquid lens for variable focus and aperture. Sens. Actuators A, 287, 177-184(2019).

    [5] D. Zhu, C. Li, X. Zeng, H. Jiang. Tunable-focus microlens arrays on curved surfaces. Appl. Phys. Lett., 96, 081111(2010).

    [6] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [7] L. Wang, T. Hayakawa, M. Ishikawa. Dielectric-elastomer-based fabrication method for varifocal microlens array. Opt. Express, 25, 31708-31717(2017).

    [8] S. Shian, R. M. Diebold, D. R. Clarke. Tunable lenses using transparent dielectric elastomer actuators. Opt. Express, 21, 8669-8676(2013).

    [9] Q. Chen, T. Li, Y. Zhu, W. Yu, X. Zhang. Dielectrophoresis-actuated in-plane optofluidic lens with tunability of focal length from negative to positive. Opt. Express, 26, 6532-6541(2018).

    [10] W. Kim, H. C. Yang, D. S. Kim. Wide and fast focus-tunable dielectro-optofluidic lens via pinning of the interface of aqueous and dielectric liquids. Opt. Express, 25, 14697-14705(2017).

    [11] L. Li, C. Liu, H. Ren, H. Deng, Q.-H. Wang. Annular folded electrowetting liquid lens. Opt. Lett., 40, 1968-1971(2015).

    [12] F. Carpi, G. Frediani, S. Turco, D. De Rossi. Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater., 21, 4152-4158(2011).

    [13] L. Maffli, M. Ghilardi, F. Carpi, H. Shea. Ultrafast all-polymer electrically tunable silicone lenses. Adv. Funct. Mater., 25, 1656-1665(2015).

    [14] J. Li, C.-J. Kim. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip, 20, 1705-1712(2020).

    [15] K. Wei, H. Zeng, Y. Zhao. Insect-human hybrid eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes. Lab Chip, 14, 3594-3602(2014).

    [16] Y. Cheng, C. Chen, J. Cao, C. Bao, A. Yang, Q. Hao. Tunable lens using dielectric elastomer sandwiched by transparent conductive liquid. Opt. Lett., 46, 4430-4433(2021).

    [17] N. Hasan, H. Kim, C. H. Mastrangelo. Large aperture tunable-focus liquid lens using shape memory alloy spring. Opt. Express, 24, 13334-13342(2016).

    [18] M. B. Kumar, J. Jung, H. Park, J. Hahn, M. Choi, J.-H. Bae, H. Kim, J. Park. Compact vari-focal augmented reality display based on ultrathin, polarization-insensitive, and adaptive liquid crystal lens. Opt. Laser Eng., 128, 106006(2020).

    [19] H.-C. Lin, Y.-H. Lin. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes. Opt. Express, 20, 2045-2052(2012).

    [20] C.-W. Chiu, Y.-C. Lin, P. C.-P. Chao, A. Y.-G. Fuh. Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes. Opt. Express, 16, 19277-19284(2008).

    [21] Z. Han, S. Colburn, A. Majumdar, K. F. Böhringer. Millimeter-scale focal length tuning with MEMS-integrated meta-optics employing high-throughput fabrication. Sci. Rep., 12, 5385(2022).

    [22] W. Zhang, H. Zappe, A. Seifert. Polyacrylate membranes for tunable liquid-filled microlenses. Opt. Eng., 52, 046601(2013).

    [23] J. E. M. Whitehead, A. Zhan, S. Colburn, L. Huang, A. Majumdar. Fast extended depth of focus meta-optics for varifocal functionality. Photon. Res., 10, 828-833(2022).

    [24] L. Alvarez. Two-element variable-power spherical lens. U.S. patent(1967).

    [25] A. W. Lohmann. A new class of varifocal lenses. Appl. Opt., 9, 1669-1671(1970).

    [26] S. Barbero. The Alvarez and Lohmann refractive lenses revisited. Opt. Express, 17, 9376-9390(2009).

    [27] M. Peloux, L. Berthelot. Optimization of the optical performance of variable-power and astigmatism Alvarez lenses. Appl. Opt., 53, 6670-6681(2014).

    [28] A. Wilson, H. Hua. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses. Opt. Express, 27, 15627-15637(2019).

    [29] Y. Zou, W. Zhang, F. Tian, F. S. Chau, G. Zhou. Development of miniature tunable multi-element Alvarez lenses. IEEE J. Sel. Top. Quantum Electron., 21, 100-107(2015).

    [30] Z. Han, S. Colburn, A. Majumdar, K. F. Böhringer. MEMS-actuated metasurface Alvarez lens. Microsyst. Nanoeng., 6, 79(2020).

    [31] Y. Zou, G. Zhou, Y. Du, F. S. Chau. Alignment tolerances and optimal design of MEMS-driven Alvarez lenses. J. Opt., 15, 125711(2013).

    [32] G. Zhou, H. Yu, F. S. Chau. Microelectromechanically-driven miniature adaptive Alvarez lens. Opt. Express, 21, 1226-1233(2013).

    [33] S. Petsch, A. Grewe, L. Köbele, S. Sinzinger, H. Zappe. Ultrathin Alvarez lens system actuated by artificial muscles. Appl. Opt., 55, 2718-2723(2016).

    [34] Y. Zou, W. Zhang, F. S. Chau, G. Zhou. Miniature adjustable-focus endoscope with a solid electrically tunable lens. Opt. Express, 23, 20582-20592(2015).

    [35] Y. Zou, F. S. Chau, G. Zhou. Ultra-compact optical zoom endoscope using solid tunable lenses. Opt. Express, 25, 20675-20688(2017).

    [36] J. Li, Y. Wang, L. Liu, S. Xu, Y. Liu, J. Leng, S. Cai. A biomimetic soft lens controlled by electrooculographic signal. Adv. Funct. Mater., 29, 1903762(2019).

    [37] C. Guo, S. Jiang, L. Yang, P. Song, T. Wang, X. Shao, Z. Zhang, M. Murphy, G. Zheng. Deep learning-enabled whole slide imaging (DeepWSI): oil-immersion quality using dry objectives, longer depth of field, higher system throughput, and better functionality. Opt. Express, 29, 39669-39684(2021).

    [38] S. Nam, S. Yun, J. W. Yoon, S. Park, S. K. Park, S. Mun, B. Park, K. U. Kyung. A robust soft lens for tunable camera application using dielectric elastomer actuators. Soft Robot, 5, 777-782(2018).

    [39] G. Li, X. Chen, F. Zhou, Y. Liang, Y. Xiao, X. Cao, Z. Zhang, M. Zhang, B. Wu, S. Yin, Y. Xu, H. Fan, Z. Chen, W. Song, W. Yang, B. Pan, J. Hou, W. Zou, S. He, X. Yang, G. Mao, Z. Jia, H. Zhou, T. Li, S. Qu, Z. Xu, Z. Huang, Y. Luo, T. Xie, J. Gu, S. Zhu, W. Yang. Self-powered soft robot in the Mariana trench. Nature, 591, 66-71(2021).

    [40] A. She, S. Zhang, S. Shian, D. R. Clarke, F. Capasso. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv., 4, 9957(2018).

    [41] L. W. Alvarez, W. E. Humphrey. Variable-power lens and system. US patent(1970).

    [42] M. Bawart, A. Jesacher, P. Zelger, S. Bernet, M. Ritsch-Marte. Modified Alvarez lens for high-speed focusing. Opt. Express, 25, 29847-29855(2017).

    [43] S. Y. Kang, M. Duocastella, C. B. Arnold. Variable optical elements for fast focus control. Nat. Photonics, 14, 533-542(2020).

    [44] H. Ren, S.-T. Wu. Adaptive lenses based on soft electroactive materials. Appl. Sci., 8, 1085(2018).

    Qun Hao, Chuanxun Chen, Jie Cao, Zhikuo Li, Yang Cheng. Ultra-wide varifocal imaging with selectable region of interest capacity using Alvarez lenses actuated by a dielectric elastomer[J]. Photonics Research, 2022, 10(7): 1543
    Download Citation