• Laser & Optoelectronics Progress
  • Vol. 57, Issue 10, 101103 (2020)
Jigang Wu*, Jun Shao, Gen Zhou, Deqiang Yang, and Yuan Cheng
Author Affiliations
  • Hunan Provincial Key Laboratory of Mechanical Equipment Health Maintenance, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • show less
    DOI: 10.3788/LOP57.101103 Cite this Article Set citation alerts
    Jigang Wu, Jun Shao, Gen Zhou, Deqiang Yang, Yuan Cheng. Vibration Measurement of Thin-walled Parts Based on Binocular Vision and Matching and Tracking of Features[J]. Laser & Optoelectronics Progress, 2020, 57(10): 101103 Copy Citation Text show less

    Abstract

    Aim

    ing at the requirement of vibration measurement of thin-walled parts, the binocular vision is combined with the matching and tracking of features to realize a more accurate method for measuring the vibration of thin-walled parts. First, the vibration images of thin-walled parts were continuously collected using a binocular camera, and image pre-processing operations, such as filtration and binarization, were performed. Second, the first frame image captured using the left and right cameras was selected, and the feature points on the image were stereo-matched according to the principle of epipolar constraint. Then, the improved optical flow method was used to track the feature points of the first frame image to obtain accurate pixel coordinates of the feature points from the second to the last frame images. Finally, the three-dimensional vibration displacement information of the object was obtained based on the binocular vision measurement principle. Experimental research and analysis show that the proposed method can accurately extract the vibration displacement information of thin-walled parts, thereby providing a new technical reference for further research on vibration characteristic analysis, vibration-damping optimization design, and structural damage identification.

    Jigang Wu, Jun Shao, Gen Zhou, Deqiang Yang, Yuan Cheng. Vibration Measurement of Thin-walled Parts Based on Binocular Vision and Matching and Tracking of Features[J]. Laser & Optoelectronics Progress, 2020, 57(10): 101103
    Download Citation