• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617015 (2022)
Jianming Yang1, Guojun Weng1、**, Jianjun Li1、2, Jian Zhu1, and Junwu Zhao1、*
Author Affiliations
  • 1Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an , Shaanxi 710049, China
  • 2Research Institute of Xi'an Jiaotong University, Hangzhou , Zhejiang 311200, China
  • show less
    DOI: 10.3788/LOP202259.0617015 Cite this Article Set citation alerts
    Jianming Yang, Guojun Weng, Jianjun Li, Jian Zhu, Junwu Zhao. Advances on SERS Based on Shifting of Raman Characteristic Peaks[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617015 Copy Citation Text show less
    References

    [1] Zong C, Xu M, Xu L J et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical Reviews, 118, 4946-4980(2018).

    [2] Shvalya V, Filipič G, Zavašnik J et al. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: the relevance of interparticle spacing and surface morphology[J]. Applied Physics Reviews, 7, 031307(2020).

    [3] Balčytis A, Nishijima Y, Krishnamoorthy S et al. From fundamental toward applied SERS: shared principles and divergent approaches[J]. Advanced Optical Materials, 6, 1800292(2018).

    [4] Zhou X, Hu Z, Yang D et al. Bacteria detection: from powerful SERS to its advanced compatible techniques[J]. Advanced Science, 7, 2001739(2020).

    [5] Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications[J]. Angewandte Chemie (International Ed. in English), 53, 4756-4795(2014).

    [6] Xing H J, Zhang J, Yin Z H et al. Carbon nanotube/silver used for highly sensitive self-calibrating Raman detection[J]. Acta Optica Sinica, 40, 1224001(2020).

    [7] Jiang C L, Liu R Y, Han G M et al. A chemically reactive Raman probe for ultrasensitively monitoring and imaging the in vivo generation of femtomolar oxidative species as induced by anti-tumor drugs in living cells[J]. Chemical Communications, 49, 6647-6649(2013).

    [8] Dong X H, Tang S Z, Chen S Y et al. Study on synovial arthritis based on surface-enhanced Raman scattering spectroscopy[J]. Laser & Optoelectronics Progress, 58, 0117001(2021).

    [9] Qi Y F, Liu Y H, Liu D M. Research progress on application of Raman spectroscopy in tumor diagnosis[J]. Laser & Optoelectronics Progress, 57, 220001(2020).

    [10] Cialla-May D, Zheng X S, Weber K et al. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics[J]. Chemical Society Reviews, 46, 3945-3961(2017).

    [11] Ding Q, Wang J, Chen X et al. Quantitative and sensitive SERS platform with analyte enrichment and filtration function[J]. Nano Letters, 20, 7304-7312(2020).

    [12] Kho K W, Dinish U S, Kumar A et al. Frequency shifts in SERS for biosensing[J]. ACS Nano, 6, 4892-4902(2012).

    [13] Ma H, Sun X, Chen L et al. Multiplex immunochips for high-accuracy detection of AFP-L3% based on surface-enhanced Raman scattering: implications for early liver cancer diagnosis[J]. Analytical Chemistry, 89, 8877-8883(2017).

    [14] Chen L, Zhao Y, Wang Y et al. Mercury species induced frequency-shift of molecular orientational transformation based on SERS[J]. The Analyst, 141, 4782-4788(2016).

    [15] Wang Y, Ji W, Sui H M et al. Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid[J]. The Journal of Physical Chemistry C, 118, 10191-10197(2014).

    [16] Tang B, Wang J, Hutchison J A et al. Ultrasensitive, multiplex Raman frequency shift immunoassay of liver cancer biomarkers in physiological media[J]. ACS Nano, 10, 871-879(2016).

    [17] Guerrini L, Pazos E, Penas C et al. Highly sensitive SERS quantification of the oncogenic protein c-Jun in cellular extracts[J]. Journal of the American Chemical Society, 135, 10314-10317(2013).

    [18] Kitagawa T, Tashiro K, Yabuki K. Stress distribution in poly-p-phenylenebenzobisoxazole (PBO) fiber as viewed from vibrational spectroscopic measurement under tension. I. stress-induced frequency shifts of Raman bands and molecular deformation mechanism[J]. Journal of Polymer Science Part B: Polymer Physics, 40, 1269-1280(2002).

    [19] Wang Y, Yu Z, Ji W et al. Enantioselective discrimination of alcohols by hydrogen bonding: a SERS study[J]. Angewandte Chemie (International Ed. in English), 53, 13866-13870(2014).

    [20] Wang X F, Liu R H, Gui Z et al. Superconductivity at 5 K in alkali-metal-doped phenanthrene[J]. Nature Communications, 2, 507(2011).

    [21] Zhang C F, Huang Z B, Yan X W et al. Charge transfer effect on Raman shifts of aromatic hydrocarbons with three phenyl rings from ab initio study[J]. The Journal of Chemical Physics, 150, 074306(2019).

    [22] Osawa K, Hamamoto T, Fujisawa T et al. Raman spectroscopic study on the solvation of p-aminobenzonitrile in supercritical water and methanol[J]. The Journal of Physical Chemistry A, 113, 3143-3154(2009).

    [23] Yang B, Cao X W, Wang C et al. Investigation of hydrogen bonding in Water/DMSO binary mixtures by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117704(2020).

    [24] Zhuang H J, Zhu W F, Yao Z Y et al. SERS-based sensing technique for trace melamine detection: a new method exploring[J]. Talanta, 153, 186-190(2016).

    [25] Ge M, Xu M M, Yuan Y X et al. Surface-enhanced Raman spectroscopic investigation on adsorption kinetic of carbon monoxide at the solid-gas interface[J]. The Journal of Chemical Physics, 153, 234704(2020).

    [26] Yu Z, Chen L, Park Y et al. The mechanism of an enzymatic reaction-induced SERS transformation for the study of enzyme-molecule interfacial interactions[J]. Physical Chemistry Chemical Physics, 18, 31787-31795(2016).

    [27] Zhu W F, Hutchison J A, Dong M D et al. Frequency shift surface-enhanced Raman spectroscopy sensing: an ultrasensitive multiplex assay for biomarkers in human health[J]. ACS Sensors, 6, 1704-1716(2021).

    [28] Kim K, Lee J W, Shin K S. Cyanide SERS as a platform for detection of volatile organic compounds and hazardous transition metal ions[J]. The Analyst, 138, 2988-2994(2013).

    [29] Perumal J, Kong K V, Dinish U S et al. Design and fabrication of random silver films as substrate for SERS based nano-stress sensing of proteins[J]. RSC Advances, 4, 12995-13000(2014).

    [30] Ma H, Liu S L, Zheng N Q et al. Frequency shifts in surface-enhanced Raman spectroscopy-based immunoassays: mechanistic insights and application in protein carbonylation detection[J]. Analytical Chemistry, 91, 9376-9381(2019).

    [31] Cheng L, Zhang Z, Zuo D et al. Ultrasensitive detection of serum MicroRNA using branched DNA-based SERS platform combining simultaneous detection of α-fetoprotein for early diagnosis of liver cancer[J]. ACS Applied Materials & Interfaces, 10, 34869-34877(2018).

    [32] Liu S, Huo Y P, Bai J L et al. Rapid and sensitive detection of prostate-specific antigen via label-free frequency shift Raman of sensing graphene[J]. Biosensors and Bioelectronics, 158, 112184(2020).

    [33] Zhu W F, Cheng L X, Li M et al. Frequency shift Raman-based sensing of serum MicroRNAs for early diagnosis and discrimination of primary liver cancers[J]. Analytical Chemistry, 90, 10144-10151(2018).

    [34] Zhang J, Dong Y, Zhu W et al. Ultrasensitive detection of circulating tumor DNA of lung cancer via an enzymatically amplified SERS-based frequency shift assay[J]. ACS Applied Materials & Interfaces, 11, 18145-18152(2019).

    [35] Kim K, Kim K L, Shin D et al. Effect of polar organic vapors on surface potential of Au nanoparticle aggregates probed by surface-enhanced Raman scattering of 2, 6-dimethylphenylisocyanide[J]. Chemical Communications, 46, 3753-3755(2010).

    [36] Kim K, Kim K L, Shin K S. Effect of organic vapors on Au, Ag, and Au-Ag alloy nanoparticle films with adsorbed 2, 6-dimethylphenyl isocyanide[J]. Journal of Colloid and Interface Science, 411, 194-197(2013).

    [37] Kim K, Lee J W, Shin D et al. Organic isocyanide-adsorbed gold nanostructure: a SERS sensory device for indirect peak-shift detection of volatile organic compounds[J]. The Analyst, 137, 1930-1936(2012).

    [38] Hanif S, Liu H L, Chen M et al. Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells[J]. Analytical Chemistry, 89, 2522-2530(2017).

    [39] Nair M, Sandhu S S, Sharma A K. Cancer molecular markers: a guide to cancer detection and management[J]. Seminars in Cancer Biology, 52, 39-55(2018).

    [40] Choi J Y, Jung S W, Kim H Y et al. Diagnostic value of AFP-L3 and PIVKA-II in hepatocellular carcinoma according to total-AFP[J]. World Journal of Gastroenterology, 19, 339-346(2013).

    [41] Fălămaș A, Rotaru H, Hedeșiu M. Surface-enhanced Raman spectroscopy (SERS) investigations of saliva for oral cancer diagnosis[J]. Lasers in Medical Science, 35, 1393-1401(2020).

    Jianming Yang, Guojun Weng, Jianjun Li, Jian Zhu, Junwu Zhao. Advances on SERS Based on Shifting of Raman Characteristic Peaks[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617015
    Download Citation