• Opto-Electronic Advances
  • Vol. 3, Issue 9, 190043-1 (2020)
Binze Zhou1, Mengjia Liu1, Yanwei Wen2, Yun Li1, and Rong Chen1、*
Author Affiliations
  • 1State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.29026/oea.2020.190043 Cite this Article
    Binze Zhou, Mengjia Liu, Yanwei Wen, Yun Li, Rong Chen. Atomic layer deposition for quantum dots based devices[J]. Opto-Electronic Advances, 2020, 3(9): 190043-1 Copy Citation Text show less
    References

    [1] C R Kagan, E Lifshitz, E H Sargent, D V Talapin. Building devices from colloidal quantum dots. Science, 353, aac5523(2016).

    [2] J Yang, M K Choi, D H Kim, T Hyeon. Designed assembly and integration of colloidal nanocrystals for device applications. Adv Mater, 28, 1176-1207(2016).

    [3] O Voznyy, B R Sutherland, A H Ip, D Zhitomirsky, E H Sargent. Engineering charge transport by heterostructuring solution-processed semiconductors. Nat Rev Mater, 2, 17026(2017).

    [4] E Lhuillier, M Scarafagio, P Hease, B Nadal, H Aubin et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett, 16, 1282-1286(2016).

    [5] R Saran, R J Curry. Lead sulphide nanocrystal photodetector technologies. Nat Photonics, 10, 81-92(2016).

    [6] Z Zheng, L Gan, J B Zhang, F W Zhuge, T Y Zhai. An enhanced UV-Vis-NIR an d flexible photodetector based on electrospun ZnO nanowire array/PbS quantum dots film heterostructure. Adv Sci, 4, 1600316(2017).

    [7] M J Yuan, M X Liu, E H Sargent. Colloidal quantum dot solids for solution-processed solar cells. Nat Energy, 1, 16016(2016).

    [8] M X Liu, O Voznyy, R Sabatini, F P G De Arquer, R Munir et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat Mater, 16, 258-263(2017).

    [9] Z L Zhang, Z H Chen, J B Zhang, W J Chen, J F Yang et al. Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer. Adv Energy Mater, 7, 1601773(2017).

    [10] X L Dai, Z X Zhang, Y Z Jin, Y Niu, H J Cao et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 515, 96-99(2014).

    [11] J Pan, L N Quan, Y B Zhao, W Peng, B Murali et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 28, 8718-8725(2016).

    [12] J H Li, L M Xu, T Wang, J Z Song, J W Chen et al. 50-Fold EQE Improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 29, 1603885(2017).

    [13] S J Oh, N E Berry, J H Choi, E A Gaulding, H Lin et al. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett, 14, 1559-1566(2014).

    [14] I J Kramer, E H Sargent. Colloidal quantum dot photovoltaics: a path forward. ACS Nano, 5, 8506-8514(2011).

    [15] A L Efros, D J Nesbitt. Origin and control of blinking in quantum dots. Nat Nanotechnol, 11, 661-671(2016).

    [16] C R Kagan, C B Murray. Charge transport in strongly coupled quantum dot solids. Nat Nanotechnol, 10, 1013-1026(2015).

    [17] H Moon, C Lee, W Lee, J Kim, H Chae. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater, 31, 1804294(2019).

    [18] K Zhao, Z X Pan, X H Zhong. Charge recombination control for high efficiency quantum dot sensitized solar cells. J Phys Chem Lett, 7, 406-417(2016).

    [19] M A Boles, D S Ling, T Hyeon, D V Talapin. Erratum: the surface science of nanocrystals. Nat Mater, 15, 364(2016).

    [20] H Huang, M I Bodnarchuk, S V Kershaw, M V Kovalenko, A L Rogach. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett, 2, 2071-2083(2017).

    [21] O Chen, J Zhao, V P Chauhan, J Cui, C Wong et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater, 12, 445-451(2013).

    [22] P Reiss, M Protiere, L Li. Core/Shell semiconductor nanocrystals. Small, 5, 154-168(2009).

    [23] G J Supran, K W Song, G W Hwang, R E Correa, J Scherer et al. High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots. Adv Mater, 27, 1437-1442(2015).

    [24] C D Pu, X G Peng. To battle surface traps on CdSe/CdS Core/Shell nanocrystals: shell isolation versus surface treatment. J Am Chem Soc, 138, 8134-8142(2016).

    [25] R L Wang, Y Q Shang, P Kanjanaboos, W J Zhou, Z J Ning et al. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ Sci, 9, 1130-1143(2016).

    [26] J Tang, K W Kemp, S Hoogland, K S Jeong, H Liu et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater, 10, 765-771(2011).

    [27] H B Shen, W R Cao, N T Shewmon, C C Yang, L S Li et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Lett, 15, 1211-1216(2015).

    [28] A H Ip, S M Thon, S Hoogland, O Voznyy, D Zhitomirsky et al. Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol, 7, 577-582(2012).

    [29] I J Kramer, E H Sargent. The architecture of colloidal quantum dot solar cells: materials to devices. Chem Rev, 114, 863-882(2014).

    [30] J Y Kim, O Voznyy, D Zhitomirsky, E H Sargent. 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv Mater, 25, 4986-5010(2013).

    [31] X L Dai, Y Z Deng, X G Peng, Y Z Jin. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv Mater, 29, 1607022(2017).

    [32] J M Pietryga, Y S Park, J Lim, A F Fidler, W K Bae et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev, 116, 10513-10622(2016).

    [33] D D Zhang, T Y Huang, L Duan. Emerging self-emissive technologies for flexible displays. Adv Mater, 31, 1902391(2019).

    [34] A S Asundi, J A Raiford, S F Bent. Opportunities for atomic layer deposition in emerging energy technologies. ACS Energy Lett, 4, 908-925(2019).

    [35] A F Palmstrom, P K Santra, S F Bent. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Nanoscale, 7, 12266-12283(2015).

    [36] R W Johnson, A Hultqvist, S F Bent. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today, 17, 236-246(2014).

    [37] A J M Mackus, M J M Merkx, W M M Kessels. From the bottom-up: toward area-selective atomic layer deposition with high selectivity. Chem Mater, 31, 2-12(2019).

    [38] D P Kumah, J H Ngai, L Kornblum. Epitaxial oxides on semiconductors: from fundamentals to new devices. Adv Funct Mater, 30, 1901597(2020).

    [39] J Z Sheng, K L Han, T Hong, W H Choi, J S Park. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes. J Semicond, 39, 011008(2018).

    [40] W B Niu, X L Li, S K Karuturi, D W Fam, H J Fan et al. Applications of atomic layer deposition in solar cells. Nanotechnology, 26, 064001(2015).

    [41] N P Dasgupta, X B Meng, J W Elam, A B F Martinson. Atomic layer deposition of metal sulfide materials. Acc Chem Res, 48, 341-348(2015).

    [42] J R Bakke, K L Pickrahn, T P Brennan, S F Bent. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale, 3, 3482-3508(2011).

    [43] V M Koch, M K S Barr, P Büttner, I Mínguez-Bacho, D Döhler et al. A solution-based ALD route towards (CH3NH3)(PbI3) perovskite via lead sulfide films. J Mater Chem A, 7, 25112-25119(2019).

    [44] H Y Wei, J H Wu, P Qiu, S J Liu, Y F He et al. Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells. J Mater Chem A, 7, 25347-25354(2019).

    [45] A Geremew, C Qian, A Abelson, S Rumyantsev, F Kargar et al. Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots. Nanoscale, 11, 20171-20178(2019).

    [46] A Abelson, C Qian, T Salk, Z Y Luan, K Fu et al. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat Mater, 19, 49-55(2020).

    [47] Y L Weng, G X Chen, X T Zhou, Q Yan, T L Guo et al. Design and fabrication of bi-functional TiO2/Al2O3 nanolaminates with selected light extraction and reliable moisture vapor barrier performance. Nanotechnology, 30, 085702(2019).

    [48] S Seo, S Jeong, H Park, H Shin, N G Park. Atomic layer deposition for efficient and stable perovskite solar cells. Chem Commun, 55, 2403-2416(2019).

    [49] J H Kwon, E G Jeong, Y Jeon, D G Kim, S Lee et al. Design of highly water resistant, impermeable, and flexible thin-film encapsulation based on inorganic/organic hybrid layers. ACS Appl Mater Interfaces, 11, 3251-3261(2019).

    [50] N P Dasgupta, H J Jung, O Trejo, M T McDowell, A Hryciw et al. Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces. Nano Lett, 11, 934-940(2011).

    [51] T P Brennan, P Ardalan, H B R Lee, J R Bakke, I K Ding et al. Atomic layer deposition of CdS quantum dots for solid-state quantum dot sensitized solar cells. Adv Energy Mater, 1, 1169-1175(2011).

    [52] N P Dasgupta, W Lee, F B Prinz. Atomic layer deposition of lead sulfide thin films for quantum confinement. Chem Mater, 21, 3973-3978(2009).

    [53] S H Kim, P H Sher, Y B Hahn, J M Smith. Luminescence from single CdSe nanocrystals embedded in ZnO thin films using atomic layer deposition. Nanotechnology, 19, 365202(2008).

    [54] A Pourret, P Guyot-Sionnest, J W Elam. Atomic layer deposition of ZnO in quantum dot thin films. Adv Mater, 21, 232-235(2009).

    [55] Y Liu, M Gibbs, C L Perkins, J Tolentino, M H Zarghami et al. Robust, functional nanocrystal solids by infilling with atomic layer deposition. Nano Lett, 11, 5349-5355(2011).

    [56] K W Kemp, A J Labelle, S M Thon, A H Ip, I J Kramer et al. Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv Energy Mater, 3, 917-922(2013).

    [57] S T Cate, Y Liu, C S S Sandeep, S Kinge, A J Houtepen et al. Activating carrier multiplication in PbSe quantum dot solids by infilling with atomic layer deposition. J Phys Chem Lett, 4, 1766-1770(2013).

    [58] E Thimsen, M Johnson, X Zhang, A J Wagner, K A Mkhoyan et al. High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas. Nat Commun, 5, 5822(2014).

    [59] K Devloo-Casier, P Geiregat, K F Ludwig, K Van Stiphout, A Vantomme et al. A case study of ALD encapsulation of quantum dots: embedding supported CdSe/CdS/ZnS quantum dots in a ZnO matrix. J Phys Chem C, 120, 18039-18045(2016).

    [60] H S Yun, K Noh, J Kim, S H Noh, G H Kim et al. CsPbBr3 perovskite quantum dot light‐emitting diodes using atomic layer deposited Al2O3 and ZnO interlayers. Phys Status Solidi RRL, 14, 1900573(2020).

    [61] S H Yoon, D Gwak, H H Kim, H J Woo, J Cho et al. Insertion of an inorganic barrier layer as a method of improving the performance of quantum dot light-emitting diodes. ACS Photonics, 6, 743-748(2019).

    [62] J Kuhs, A Werbrouck, N Zawacka, E Drijvers, P F Smet et al. In situ photoluminescence of colloidal quantum dots during gas exposure—the role of water and reactive atomic layer deposition precursors. ACS Appl Mater Interfaces, 11, 26277-26287(2019).

    [63] H Jin, H Moon, W Lee, H Hwangbo, S H Yong et al. Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers. RSC Adv, 9, 11634-11640(2019).

    [64] T L Guo, R Bose, X H Zhou, Y N Gartstein, H Z Yang et al. Delayed photoluminescence and modified blinking statistics in alumina-encapsulated zero-dimensional inorganic perovskite nanocrystals. J Phys Chem Lett, 10, 6780-6787(2019).

    [65] Q Y Xiang, B Z Zhou, K Cao, Y W Wen, Y Li et al. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition. Chem Mater, 30, 8486-8494(2018).

    [66] M Palei, V Caligiuri, S Kudera, R Krahne. Robust and bright photoluminescence from colloidal nanocrystal/Al2O3 composite films fabricated by atomic layer deposition. ACS Appl Mater Interfaces, 10, 22356-22362(2018).

    [67] N Mahmoud, W Walravens, J Kuhs, C Detavernier, Z Hens et al. Micro-transfer-printing of Al2O3-capped short-wave-infrared PbS quantum dot photoconductors. ACS Appl Nano Mater, 2, 299-306(2018).

    [68] W Y Ji, H B Shen, H Zhang, Z H Kang, H Z Zhang. Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer. Nanoscale, 10, 11103-11109(2018).

    [69] R Bose, A Dangerfield, S M Rupich, T L Guo, Y Z Zheng et al. Engineering multilayered nanocrystal solids with enhanced optical properties using metal oxides for photonic applications. ACS Appl Nano Mater, 1, 6782-6789(2018).

    [70] A Loiudice, S Saris, E Oveisi, D T L Alexander, R Buonsanti. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed, 56, 10696-10701(2017).

    [71] Z W Li. Enhanced performance of quantum dots light-emitting diodes: the case of Al2O3 electron blocking layer. Vacuum, 137, 38-41(2017).

    [72] M Zeng, X G Peng, J J Liao, G Z Wang, Y F Li et al. Enhanced photoelectrochemical performance of quantum dot-sensitized TiO2 nanotube arrays with Al2O3 overcoating by atomic layer deposition. Phys Chem Chem Phys, 18, 17404-17413(2016).

    [73] B Yin, B Sadtler, M Y Berezin, E Thimsen. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition. Chem Commun, 52, 11127-11130(2016).

    [74] D Valdesueiro, M K Prabhu, C Guerra-Nunez, C S S Sandeep, S Kinge et al. Deposition mechanism of aluminum oxide on quantum dot films at atmospheric pressure and room temperature. J Phys Chem C, 120, 4266-4275(2016).

    [75] G R Li, F W R Rivarola, N J L K Davis, S Bai, T C Jellicoe et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater, 28, 3528-3534(2016).

    [76] J Ephraim, D Lanigan, C Staller, D J Milliron, E Thimsen. Transparent conductive oxide nanocrystals coated with insulators by atomic layer deposition. Chem Mater, 28, 5549-5553(2016).

    [77] C Y Cheng, M H Mao. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition. J Appl Phys, 120, 083103(2016).

    [78] H M So, H Choi, H C Shim, S M Lee, S Jeong et al. Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors. Appl Phys Lett, 106, 093507(2015).

    [79] V Sayevich, N Gaponik, M Plötner, M Kruszynska, T Gemming et al. Stable dispersion of iodide-capped pbse quantum dots for high-performance low-temperature processed electronics and optoelectronics. Chem Mater, 27, 4328-4337(2015).

    [80] J Zhang, J Tolentino, E R Smith, J B Zhang, M C Beard et al. Carrier transport in PbS and PbSe QD films measured by photoluminescence quenching. J Phys Chem C, 118, 16228-16235(2014).

    [81] C Hu, A Gassenq, Y Justo, K Devloo-Casier, H T Chen et al. Air-stable short-wave infrared PbS colloidal quantum dot photoconductors passivated with Al2O3 atomic layer deposition. Appl Phys Lett, 105, 171110(2014).

    [82] K E Roelofs, T P Brennan, J C Dominguez, C D Bailie, G Y Margulis et al. Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells. J Phys Chem C, 117, 5584-5592(2013).

    [83] Y Liu, J Tolentino, M Gibbs, R Ihly, C L Perkins et al. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V-1 s-1. Nano Lett, 13, 1578-1587(2013).

    [84] A H Ip, A J Labelle, E H Sargent. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier. Appl Phys Lett, 103, 263905(2013).

    [85] T P Brennan, O Trejo, K E Roelofs, J Xu, F B Prinz et al. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer. J Mater Chem A, 1, 7566-7575(2013).

    [86] D K Kim, Y M Lai, B T Diroll, C B Murray, C R Kagan. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nat Commun, 3, 1216(2012).

    [87] E M Likovich, R Jaramillo, K J Russell, S Ramanathan, V Narayanamurti. High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes. Adv Mater, 23, 4521-4525(2011).

    [88] K Lambert, J Dendooven, C Detavernier, Z Hens. Embedding quantum dot monolayers in Al2O3 using atomic layer deposition. Chem Mater, 23, 126-128(2011).

    [89] R Ihly, J Tolentino, Y Liu, M Gibbs, M Law. The photothermal stability of PbS quantum dot solids. ACS Nano, 5, 8175-8186(2011).

    [90] J H Choi, S J Oh, Y M Lai, D K Kim, T S Zhao et al. In situ repair of high-performance, flexible nanocrystal electronics for large-area fabrication and operation in air. ACS Nano, 7, 8275-8283(2013).

    [91] F Di Stasio, I Ramiro, Y Bi, S Christodoulou, A Stavrinadis et al. High-efficiency light-emitting diodes based on formamidinium lead bromide nanocrystals and solution processed transport layers. Chem Mater, 30, 6231-6235(2018).

    [92] K H Yu, X Lin, G H Lu, Z H Wen, C Yuan et al. Optimized CdS quantum dot-sensitized solar cell performance through atomic layer deposition of ultrathin TiO2 coating. RSC Adv, 2, 7843-7848(2012).

    [93] X Lin, K H Yu, G H Lu, J H Chen, C Yuan. Atomic layer deposition of TiO2 interfacial layer for enhancing performance of quantum dot and dye co-sensitized solar cells. J Phys D Appl Phys, 46, 024004(2013).

    [94] Z Xie, X X Liu, W P Wang, X J Wang, C Liu et al. Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition. Nano Energy, 11, 400-408(2015).

    [95] H Y Wei, P Qiu, M Z Peng, Q X Wu, S J Liu et al. Interface modification for high-efficient quantum dot sensitized solar cells using ultrathin aluminum nitride coating. Appl Surf Sci, 476, 608-614(2019).

    [96] X Y Zhang, M Lu, Y Zhang, H Wu, X Y Shen et al. PbS capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p-i-n structures. ACS Cent Sci, 4, 1352-1359(2018).

    [97] X Liu, X S Zhang, L Li, J P Xu, S L Yu et al. Stable luminescence of CsPbBr3/nCdS Core/Shell Perovskite quantum dots with Al self-passivation layer modification. ACS Appl Mater Interfaces, 11, 40923-40931(2019).

    [98] Y Q Zu, J F Dai, L Li, F Yuan, X Chen et al. Ultra-stable CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield via postsynthetic surface engineering. J Mater Chem A, 7, 26116-26122(2019).

    [99] X M Li, Y Wu, S L Zhang, B Cai, Y Gu et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater, 26, 2435-2445(2016).

    [100] Q S Shan, J Z Song, Y S Zou, J H Li, L M Xu et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small, 13, 1701770(2017).

    [101] Q Van Le, K Hong, H W Jang, S Y Kim. Halide perovskite quantum dots for light‐emitting diodes: properties, synthesis, applications, and outlooks. Adv Electron Mater, 4, 1800335(2018).

    [102] D D Yang, X M Li, H B Zeng. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Adv Mater Interfaces, 5, 1701662(2018).

    [103] A Loiudice, M Strach, S Saris, D Chernyshov, R Buonsanti. Universal oxide shell growth enables in situ structural studies of perovskite nanocrystals during the anion exchange reaction. J Am Chem Soc, 141, 8254-8263(2019).

    [104] B Zhou, Z Wang, S Geng, Y Li, K Wang et al. Interface Engineering of CsPbBr3 Nanocrystal Light-Emitting Diodes via Atomic Layer Deposition. Phys Status Solidi RRL, 14, 2000083(2020).

    [105] W Z Lv, L Li, M C Xu, J X Hong, X X Tang et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv Mater, 31, 1900682(2019).

    [106] H C Wang, S Y Lin, A C Tang, B P Singh, H C Tong et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed, 55, 7924-7929(2016).

    [107] Z Q Liu, Y Q Zhang, Y Fan, Z Q Chen, Z B Tang et al. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS Appl Mater Interfaces, 10, 13053-13061(2018).

    [108] D A Hines, P V Kamat. Recent advances in quantum dot surface chemistry. ACS Appl Mater Interfaces, 6, 3041-3057(2014).

    [109] F P G De Arquer, A Armin, P Meredith, E H Sargent. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater, 2, 16100(2017).

    [110] A P Litvin, I V Martynenko, F Purcell-Milton, A V Baranov, A V Fedorov et al. Colloidal quantum dots for optoelectronics. J Mater Chem A, 5, 13252-13275(2017).

    [111] P Guyot-Sionnest. Electrical transport in colloidal quantum dot films. J Phys Chem Lett, 3, 1169-1175(2012).

    [112] X Y Liang, S Bai, X Wang, X L Dai, F Gao et al. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chem Soc Rev, 46, 1730-1759(2017).

    [113] M C Beard, J M Luther, A J Nozik. The promise and challenge of nanostructured solar cells. Nat Nanotechnol, 9, 951-954(2014).

    [114] H Y Wei, D M Li, X H Zheng, Q B Meng. Recent progress of colloidal quantum dot based solar cells. Chin Phys B, 27, 018808(2018).

    [115] Z L Du, M Artemyev, J Wang, J G Tang. Performance improvement strategies for quantum dot-sensitized solar cells: a review. J Mater Chem A, 7, 2464-2489(2019).

    [116] K A Bush, A F Palmstrom, Z J Yu, M Boccard, R Cheacharoen et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2, 17009(2017).

    [117] W Z Li, J L Li, L D Wang, G D Niu, R D Gao et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J Mater Chem A, 1, 11735-11740(2013).

    [118] D Koushik, W J H Verhees, Y H Kuang, S Veenstra, D Zhang et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ Sci, 10, 91-100(2017).

    [119] Y F Lv, P H Xu, G Q Ren, F Chen, H R Nan et al. Low-temperature atomic layer deposition of metal oxide layers for perovskite solar cells with high efficiency and stability under harsh environmental conditions. ACS Appl Mater Interfaces, 10, 23928-23937(2018).

    [120] S Seo, S Jeong, C Bae, N G Park, H Shin. Perovskite solar cells with inorganic electron- and hole-transport layers exhibiting long-term (≈500 h) Stability at 85 ℃ under continuous 1 sun illumination in ambient air. Adv Mater, 30, 1801010(2018).

    [121] Y H Kim, J S Heo, T H Kim, S Park, M H Yoon et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature, 489, 128-132(2012).

    [122] B D Zhao, L C Lee, L Yang, A J Pearson, H Z Lu et al. In situ atmospheric deposition of ultrasmooth nickel oxide for efficient perovskite solar cells. ACS Appl Mater Interfaces, 10, 41849-41854(2018).

    [123] G J Li, Y B Jiang, S B Deng, A Tam, P Xu et al. Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv Sci, 4, 1700463(2017).

    [124] A F Palmstrom, J A Raiford, R Prasanna, K A Bush, M Sponseller et al. Interfacial effects of tin oxide atomic layer deposition in metal halide perovskite photovoltaics. Adv Energy Mater, 8, 1800591(2018).

    [125] H Zhang, N Sui, X C Chi, Y H Wang, Q H Liu et al. Ultrastable quantum-dot light-emitting diodes by suppression of leakage current and exciton quenching processes. ACS Appl Mater Interfaces, 8, 31385-31391(2016).

    [126] Z Y Yang, T Albrow-Owen, H X Cui, J Alexander-Webber, F X Gu et al. Single-nanowire spectrometers. Science, 365, 1017-1020(2019).

    [127] J W Wang, F Sciarrino, A Laing, M G Thompson. Integrated photonic quantum technologies. Nat Photonics, 14, 273-284(2020).

    [128] P Geiregat, D Van Thourhout, Z Hens. A bright future for colloidal quantum dot lasers. NPG Asia Mater, 11, 41(2019).

    Binze Zhou, Mengjia Liu, Yanwei Wen, Yun Li, Rong Chen. Atomic layer deposition for quantum dots based devices[J]. Opto-Electronic Advances, 2020, 3(9): 190043-1
    Download Citation