• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 4, 397 (2020)
Li-Jie LIU1, Yuan-Da WU2、*, Yue WANG1, Liang-Liang WANG1, Jun-Ming An2, and You-Wen ZHAO3
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing00083,China
  • 2State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing00083,China
  • 3College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.04.001 Cite this Article
    Li-Jie LIU, Yuan-Da WU, Yue WANG, Liang-Liang WANG, Jun-Ming An, You-Wen ZHAO. 1 550 nm VCSELs for long-reach optical interconnects[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 397 Copy Citation Text show less
    References

    [1] V Iakovlev, G Suruceanu, A Caliman. High-performance single-mode VCSELs in the 1310-nm waveband. IEEE photonics technology letters, 17, 947-949(2005).

    [2] Koyama K, Advances and new functions of VCSEL photonics. Optical Review, 21, 893-904(2014).

    [3] C Chang-hasnain. Progress and prospects of long-wavelenght VCSELs. IEEE Communications Magazine, 41, S30-S34(2003).

    [5] E Kapon, A Sirbu. Power-efficient answer. Nature Photonics, 3, 27-29(2009).

    [6] Chepkoiwo Cherutoi. 310 nm and 1 550 nm transmission wavelengths. American Journal of Optics and Photonics, 5, 73-79(2017).

    [7] A Karthikeyan, P S Mallick. High-speed and low-power repeater for VLSI interconnects. Journal of Semiconductors, 38, 105006-1-105006-5(2017).

    [8] X Wang, J F Liu. Emerging technologies in Si active photonics. Journal of Semiconductors, 39, 061001-1-061001-29(2018).

    [9] N Nishiyama, C Caneau, B Hall. Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD. IEEE Journal of Selected Topics in Quantum Electronics, 11, 990-998(2005).

    [10] C J Chang-Hasnain. Tunable VCSEL. IEEE Journal of Selected Topics in Quantum Electronics, 6, 978-987(2000).

    [11] K Li, Y Rao, C Chase. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica, 5, 10-13(2018).

    [12] C Chase*a, Y Raoa, M Huanga. Tunable 1550 nm VCSELs using high contrast grating for next-generation networks. SPIE, 9008, 900807-1-900807-5(2014).

    [13] R Shau*a, M Ortsieferb, J Rosskopfb. Long-wavelength InP-based VCSELs with buried tunnel junctions: Properties and applications. SPIE, 5364, 1-15(2004).

    [14] M Muller, W Hofmann, T Grundl. 1550-nm High-Speed Short-Cavity VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1158-1166(2011).

    [15] K Zogal, T Gruendl, H A Dacani. 55-µm MEMS-tunable VCSEL(2011).

    [16] S Hu, X Y He, Y He. Impact of damping on high speed 850 nm VCSEL performance. Journal of Semiconductors, 39, 114006-1-114006-4(2018).

    [17] G Z Shi. Study of wavelength tunable vertical-cavity surface-emitting lasers(2013).

    [19] 19http://mp.weixin.qq.com/s/eOK1fpzgvXy5Gq-O_eUB0A (2017/03/02) http://mp.weixin.qq.com/s/eOK1fpzgvXy5Gq-O_eUB0A (2017/03/02

    [20] C Caneau, R Bhat, S Goswami. OMVPE grown GaInAs:C for HBTs. Journal of Electronics Materials, 25, 491-494(1996).

    [21] 21RhodesW T, et al., Fundamentals of fiber lasers and fiber amplifiers [M]. Berlin:Springer2013,1-235.

    [22] A Islam, S Islam. Designing a high speed 1 310 nm AlGaInAs/AlGaInAs VCSEL using MgO/Si top DBR and GaInAsP/InP bottom DBR. American Journal of Optics and Photonics, 2, 38-44(2014).

    [23] T Shih, Y C Chi, R N Wang. Efficient heat dissipation of uncooled 400-Gbps (16×25-Gbps) optical transceiver employing multimode VCSEL and PD arrays. Scientific Reports, 7, 1-10(2017).

    Li-Jie LIU, Yuan-Da WU, Yue WANG, Liang-Liang WANG, Jun-Ming An, You-Wen ZHAO. 1 550 nm VCSELs for long-reach optical interconnects[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 397
    Download Citation