• Acta Optica Sinica
  • Vol. 39, Issue 6, 0623002 (2019)
Ling Wu1、*, Niannian Chen1, Yong Fan1, and Yidong Ye2
Author Affiliations
  • 1 School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
  • 2 Institute of Applied Electronics, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • show less
    DOI: 10.3788/AOS201939.0623002 Cite this Article Set citation alerts
    Ling Wu, Niannian Chen, Yong Fan, Yidong Ye. Surface Reconstruction of Large Aperture Plane Optical Components Based on Method of Relative Angle Difference[J]. Acta Optica Sinica, 2019, 39(6): 0623002 Copy Citation Text show less
    References

    [1] Wu L, Li J B, Chen N N et al. Centroid detection of laser spots in large plane optical components topography measurement system[J]. Infrared and Laser Engineering, 43, 1704-1709(2014).

         Wu L, Li J B, Chen N N et al. Centroid detection of laser spots in large plane optical components topography measurement system[J]. Infrared and Laser Engineering, 43, 1704-1709(2014).

    [2] Chen H P, Xiong Z, Cao T F et al. Research on surface measure device for process of large aperture mirror assembly[J]. Acta Optica Sinica, 36, 0212002(2016).

         Chen H P, Xiong Z, Cao T F et al. Research on surface measure device for process of large aperture mirror assembly[J]. Acta Optica Sinica, 36, 0212002(2016).

    [3] Chen H P, Li J B, Liu C C et al. Research on angle measure error based on method of angle difference[J]. Acta Optica Sinica, 34, 1012003(2014).

         Chen H P, Li J B, Liu C C et al. Research on angle measure error based on method of angle difference[J]. Acta Optica Sinica, 34, 1012003(2014).

    [4] Ma D M, Sun J Y, Zhang B et al. High precision large flat mirror measurement by angle difference testing[J]. Optics and Precision Engineering, 13, 121-126(2005).

         Ma D M, Sun J Y, Zhang B et al. High precision large flat mirror measurement by angle difference testing[J]. Optics and Precision Engineering, 13, 121-126(2005).

    [5] Fan Y, Chen N N, Zhang J F et al. Topography measurement system of large flat mirror[J]. Computer Measurement & Control, 18, 785-788(2010).

         Fan Y, Chen N N, Zhang J F et al. Topography measurement system of large flat mirror[J]. Computer Measurement & Control, 18, 785-788(2010).

    [6] Lu Y J, Tang F, Wang X Z et al. Analysis on the accuracy of flat sub-aperture stitching interferometry[J]. Chinese Journal of Lasers, 45, 0404002(2018).

         Lu Y J, Tang F, Wang X Z et al. Analysis on the accuracy of flat sub-aperture stitching interferometry[J]. Chinese Journal of Lasers, 45, 0404002(2018).

    [7] Schlüns K, Klette R. Local and global integration of discrete vector fields[M]. ∥Solina F, Kropatsch W G, Klette R, et al. Advances in Computer Vision. Vienna: Springer, 149-158(1997).

         Schlüns K, Klette R. Local and global integration of discrete vector fields[M]. ∥Solina F, Kropatsch W G, Klette R, et al. Advances in Computer Vision. Vienna: Springer, 149-158(1997).

    [8] Huang L, Idir M, Zuo C et al. Comparison of two-dimensional integration methods for shape reconstruction from gradient data[J]. Optics and Lasers in Engineering, 64, 1-11(2015).

         Huang L, Idir M, Zuo C et al. Comparison of two-dimensional integration methods for shape reconstruction from gradient data[J]. Optics and Lasers in Engineering, 64, 1-11(2015).

    [9] Huang L, Xue J P, Gao B et al. Spline based least squares integration for two-dimensional shape or wavefront reconstruction[J]. Optics and Lasers in Engineering, 91, 221-226(2017).

         Huang L, Xue J P, Gao B et al. Spline based least squares integration for two-dimensional shape or wavefront reconstruction[J]. Optics and Lasers in Engineering, 91, 221-226(2017).

    [10] Neubauer A. A new cumulative wavefront reconstructor for the Shack-Hartmann sensor[J]. Journal of Inverse and Ill-Posed Problems, 21, 451-476(2013).

         Neubauer A. A new cumulative wavefront reconstructor for the Shack-Hartmann sensor[J]. Journal of Inverse and Ill-Posed Problems, 21, 451-476(2013).

    [11] Bon P, Monneret S, Wattellier B. Noniterative boundary-artifact-freewavefront reconstruction from its derivatives[J]. Applied Optics, 51, 5698-6704(2012).

         Bon P, Monneret S, Wattellier B. Noniterative boundary-artifact-freewavefront reconstruction from its derivatives[J]. Applied Optics, 51, 5698-6704(2012).

    [12] Harker M. O’Leary P. Regularized reconstruction of a surface from its measured gradient field[J]. Journal of Mathematical Imaging and Vision, 51, 46-70(2015).

         Harker M. O’Leary P. Regularized reconstruction of a surface from its measured gradient field[J]. Journal of Mathematical Imaging and Vision, 51, 46-70(2015).

    [13] Scherr T. Gradient-based surface reconstruction and the application to wind waves[D]. Heidelberg: Ruprecht Karls University, 29-63(2017).

         Scherr T. Gradient-based surface reconstruction and the application to wind waves[D]. Heidelberg: Ruprecht Karls University, 29-63(2017).

    Ling Wu, Niannian Chen, Yong Fan, Yidong Ye. Surface Reconstruction of Large Aperture Plane Optical Components Based on Method of Relative Angle Difference[J]. Acta Optica Sinica, 2019, 39(6): 0623002
    Download Citation