• Acta Optica Sinica
  • Vol. 41, Issue 1, 0102002 (2021)
Shuqing Wu1、2、** and Tianchu Li1、2、*
Author Affiliations
  • 1Time and Frequency Metrology Division of National Institute of Metrology, Beijing 100029, China
  • 2Key Laboratory of Time and Frequency of State Administration for Market Regulation, Beijing 100029, China
  • show less
    DOI: 10.3788/AOS202141.0102002 Cite this Article Set citation alerts
    Shuqing Wu, Tianchu Li. Technical Development of Absolute Gravimeter: Laser Interferometry and Atom Interferometry[J]. Acta Optica Sinica, 2021, 41(1): 0102002 Copy Citation Text show less
    Principle of laser absolute gravimeter[2]
    Fig. 1. Principle of laser absolute gravimeter[2]
    Composition of laser absolute gravimeter
    Fig. 2. Composition of laser absolute gravimeter
    JILA absolute gravimeter[3]
    Fig. 3. JILA absolute gravimeter[3]
    FG5 and FG5X absolute gravimeters from Micro-g Lacoste company[5-6]
    Fig. 4. FG5 and FG5X absolute gravimeters from Micro-g Lacoste company[5-6]
    IMGC02 absolute gravimeter[8]
    Fig. 5. IMGC02 absolute gravimeter[8]
    FGC cam type absolute gravimeter[9]
    Fig. 6. FGC cam type absolute gravimeter[9]
    NIM-3A absolute gravimeter
    Fig. 7. NIM-3A absolute gravimeter
    Basic principle. (a) Stimulated Raman transition; (b) schematic of atomic interference
    Fig. 8. Basic principle. (a) Stimulated Raman transition; (b) schematic of atomic interference
    Schematic of working principle of atom interferometry absolute gravimeter
    Fig. 9. Schematic of working principle of atom interferometry absolute gravimeter
    Atomic interference fringes[29]
    Fig. 10. Atomic interference fringes[29]
    System structure diagram of atom interferometry absolute gravimeter[30]
    Fig. 11. System structure diagram of atom interferometry absolute gravimeter[30]
    Vacuum system of NIM-AGRb-1 atom interferometry absolute gravimeter [29]
    Fig. 12. Vacuum system of NIM-AGRb-1 atom interferometry absolute gravimeter [29]
    Schematic of optical system of NIM-AGRb-1 atom interferometry absolute gravimeter
    Fig. 13. Schematic of optical system of NIM-AGRb-1 atom interferometry absolute gravimeter
    Schematic of a small optical system. (a) Schematic of a small optical system developed by the French space agency group[39]; (b) laser frequency distribution
    Fig. 14. Schematic of a small optical system. (a) Schematic of a small optical system developed by the French space agency group[39]; (b) laser frequency distribution
    Long term gravity measurement data. (a) Long term gravity measurement data of NIM-AGRb-1 atom interferometry absolute gravimeter; (b) experimental data and theoretical difference [28]
    Fig. 15. Long term gravity measurement data. (a) Long term gravity measurement data of NIM-AGRb-1 atom interferometry absolute gravimeter; (b) experimental data and theoretical difference [28]
    Allan variance of NIM-AGRb-1 gravity measurement data[28]
    Fig. 16. Allan variance of NIM-AGRb-1 gravity measurement data[28]
    InstitutionSensitivity /(μGal·Hz-1/2)
    SYRTE5.7
    Humboldt University9.6
    Berkeley37
    HUST4.2
    APM28
    ZJUT300
    NIM44
    Table 1. Sensitivity of atomic gravimeters of some research groups at home and abroad
    GravimeterSystematic effectBias /μGalUncertainty /μGal
    keff independent0.00.5
    Self gravity3.30.1
    Two-photon light shift-4.20.9
    Detection-19.70.6
    NIM-AGRb-1Coriolis-0.30.2
    Wavefront1.35.0
    Laser frequency1.00.3
    Microwave frequency0.00.1
    Verticality0.00.2
    Total-18.65.2
    Table 2. NIM-AGRb-1 system error evaluation table[28]
    Shuqing Wu, Tianchu Li. Technical Development of Absolute Gravimeter: Laser Interferometry and Atom Interferometry[J]. Acta Optica Sinica, 2021, 41(1): 0102002
    Download Citation