• Journal of Semiconductors
  • Vol. 40, Issue 7, 071906 (2019)
Xu Wang1、2, Lei Xu1, Yun Jiang1, Zhouyang Yin1, Christopher C. S. Chan3, Chaoyong Deng1, and Robert A. Taylor4
Author Affiliations
  • 1Key Laboratory of Electronic Functional Composite Materials of Guizhou Province, Guizhou University, Guiyang 550025, China
  • 2Guizhou Institute of Quantum Information and Big Data Applied Technology, Guiyang 550002, China
  • 3Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China
  • 4Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK
  • show less
    DOI: 10.1088/1674-4926/40/7/071906 Cite this Article
    Xu Wang, Lei Xu, Yun Jiang, Zhouyang Yin, Christopher C. S. Chan, Chaoyong Deng, Robert A. Taylor. III–V compounds as single photon emitters[J]. Journal of Semiconductors, 2019, 40(7): 071906 Copy Citation Text show less
    References

    [1]

    [2] K Hennessy, A Badolato, M Winger et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445, 896(2007).

    [3] A W Harrow, A Montanaro. Quantum computational supremacy. Nature, 549, 203(2017).

    [4] L Hu, S H Wu, W Cai et al. Quantum generative adversarial learning in a superconducting quantum circuit. Sci Adv, 5, eaav2761(2019).

    [5] X Qiang, X Zhou, J Wang et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photonics, 12, 534(2018).

    [6] P Kok, W J Munro, K Nemoto et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 79, 135(2007).

    [7] V Giovannetti, S Lloyd, L Maccone. Advances in quantum metrology. Nat Photonics, 5, 222(2011).

    [8] M C Chen, C Liu, Y H Luo et al. Experimental demonstration of quantum pigeonhole paradox. PNAS; Proceedings of the National Academy of Sciences, 116, 1549(2019).

    [9] S K Liao, W Q Cai, J Handsteiner et al. Satellite-relayed intercontinental quantum network. Phys Rev Lett, 120, 030501(2018).

    [10] A Kuhn, M Hennrich, G Rempe. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett, 89, 067901(2002).

    [11] S Chu. Cold atoms and quantum control. Nature, 416, 206(2002).

    [12] S Haroche, D Kleppner. Cavity quantum electrodynamics. Phys Today, 42, 24(1989).

    [13] E K Dietsche, A Larrouy, S Haroche et al. High-sensitivity magnetometry with a single atom in a superposition of two circular rydberg states. Nat Phys, 15, 326(2019).

    [14] P O Schmidt, T Rosenband, C Langer et al. Spectroscopy using quantum logic. Science, 309, 749(2005).

    [15] M Almendros, J Huwer, N Piro et al. Bandwidthtunable single-photon source in an ion-trap quantum network. Phys Rev Lett, 103, 213601(2009).

    [16] D B Higginbottom, L Slodička, G Araneda et al. Pure single photons from a trapped atom source. New J Phys, 18, 093038(2016).

    [17] P Senellart, G Solomon, A White. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 12, 1026(2017).

    [18] J Benedikter, H Kaupp, T Hümmer et al. Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond. Phys Rev Appl, 7, 024031(2017).

    [19] B Lounis, W E Moerner. Single photons on demand from a single molecule at room temperature. Nature, 407, 491(2000).

    [20] T T Tran, K Bray, M J Ford et al. Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol, 11, 37(2015).

    [21] Y M He, G Clark, J R Schaibley et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 10, 497(2015).

    [22] C Chakraborty, L Kinnischtzke, K M Goodfellow et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 10, 507(2015).

    [23] X Wang, J A Alexander-Webber, W Jia et al. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Sci Rep, 6, 37167(2016).

    [24] X He, H Htoon, S K Doorn et al. Carbon nanotubes as emerging quantum-light sources. Nat Mater, 17, 663(2018).

    [25] X Ding, Y He, Z C Duan et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 116, 020401(2016).

    [26] N Somaschi, V Giesz, L De Santis et al. Near-optimal single-photon sources in the solid state. Nat Photonics, 10, 340(2016).

    [27] D Gammon, E S Snow, B V Shanabrook et al. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science, 273, 87(1996).

    [28] J H Rice, J W Robinson, J H Na et al. Biexciton and exciton dynamics in single ingan quantum dots. Nanotechnology, 16, 1477(2005).

    [29] A J Shields. Semiconductor quantum light sources. Nat Photonics, 1, 215(2007).

    [30] A D Andreev, E P O’Reilly. Optical transitions and radiative lifetime in gan/aln self-organized quantum dots. Appl Phys Lett, 79, 521(2001).

    [31] K H Lee, F S F Brossard, M Hadjipanayi et al. Towards registered single quantum dot photonic devices. Nanotechnology, 19, 455307(2008).

    [32] E Schöll, L Hanschke, L Schweickert et al. Resonance fluorescence of gaas quantum dots with near-unity photon indistinguishability. Nano Lett, 19, 2404(2019).

    [33] T Miyazawa, K Takemoto, Y Sakuma et al. Single-photon generation in the 1.55-μm optical-fiber band from an inas/inp quantum dot. Jpn J Appl Phys, 44, L620(2005).

    [34] A J Fotue, S C Kenfack, N Issofa et al. Energy levels of magneto-optical polaron in spherical quantum dot — part 1: Strong coupling. J Semicond, 36, 092001(2015).

    [35] P Michler, A Imamoğlu, M D Mason et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 406, 968(2000).

    [36] B Mahler, P Spinicelli, S Buil et al. Towards non-blinking colloidal quantum dots. Nat Mater, 7, 659(2008).

    [37] P K Shandilya, J E Fröch, M Mitchell et al. Hexagonal boron nitride cavity optomechanics. Nano Lett, 19, 1343(2019).

    [38] R H Brown, R Q Twiss. Interferometry of the intensity fluctuations in light. I. basic theory: the correlation between photons in coherent beams of radiation. Proc R Soc A, 242, 300(1957).

    [39] T Wang, T J Puchtler, T Zhu et al. Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots. Nanoscale, 9, 9421(2017).

    [40] V Giesz, O Gazzano, A K Nowak et al. Influence of the purcell effect on the purity of bright single photon sources. Appl Phys Lett, 103, 033113(2013).

    [41] E B Flagg, S V Polyakov, T Thomay et al. Dynamics of nonclassical light from a single solid-state quantum emitter. Phys Rev Lett, 109, 163601(2012).

    [42] K A Fischer, K Müller, K G Lagoudakis et al. Dynamical modeling of pulsed two-photon interference. New J Phys, 18, 113053(2016).

    [43] C K Hong, Z Y Ou, L Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett, 59, 2044(1987).

    [44] X L Wang, X D Cai, Z E Su et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516(2015).

    [45] S Aaronson, A Arkhipov. The computational complexity of linear optics. Theor Comput, 9, 143(2013).

    [46]

    [47] F Liu, A J Brash, J O’Hara et al. High purcell factor generation of indistinguishable on-chip single photons. Nat Nanotechnol, 13, 835(2018).

    [48] M Munsch, NS Malik, E Dupuy et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a gaussian optical beam. Phys Rev Lett, 110, 177402(2013).

    [49] J Claudon, J Bleuse, N S Malik et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics, 4, 174(2010).

    [50] M Gschrey, A Thoma, P Schnauber et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three dimensional in situ electron-beam lithography. Nat Commun, 6, 7662(2015).

    [51] L Sapienza, M Davanço, A Badolato et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat Commun, 6, 7833(2015).

    [52] O Gazzano, S Michaelis de Vasconcellos, C Arnold et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 4, 1425(2013).

    [53] S Unsleber, Y M He, S Gerhardt et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt Express, 24, 8539(2016).

    [54] A Einstein, B Podolsky, N Rosen. Can quantum-mechanical description of physical reality be considered complete. Phys Rev, 47, 777(1935).

    [55] H J Briegel, W Dür, J I Cirac et al. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys Rev Lett, 81, 5932(1998).

    [56] C H Bennett, G Brassard, C Crépeau et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys Rev Lett, 70, 1895(1993).

    [57] R Raussendorf, H J Briegel. A one-way quantum computer. Phys Rev Lett, 86, 5188(2001).

    [58] U L Andersen, T C Ralph. High-fidelity teleportation of continuous-variable quantum states using delocalized single photons. Phys Rev Lett, 111, 050504(2013).

    [59] L Goldstein, F Glas, J Y Marzin et al. Growth by molecular beam epitaxy and characterization of InAs/GaAs strainedlayer superlattices. Appl Phys Lett, 47, 1099(1985).

    [60] E Clarke, P Spencer, E Harbord et al. optical properties and device characterisation of InAs/GaAs quantum dot bilayers. J Phys Conf Ser, 107, 012003(2008).

    [61] T Konishi, E Clarke, C W Burrows et al. Spatial regularity of InAs-GaAs quantum dots: quantifying the dependence of lateral ordering on growth rate. Sci Rep, 7, 42606(2017).

    [62] S Haffouz, K D Zeuner, D Dalacu et al. Bright single inasp quantum dots at telecom wavelengths in position-controlled inp nanowires: The role of the photonic waveguide. Nano Lett, 18, 3047(2018).

    [63] L Schweickert, K D Jöns, K D Zeuner et al. On-demand generation of background-free single photons from a solid-state source. Appl Phys Lett, 112, 093106(2018).

    [64] D Huber, M Reindl, Y Huo et al. Highly indistinguishable and strongly entangled photons from symmetric gaas quantum dots. Nat Commun, 8, 15506(2017).

    [65] B Patton, W Langbein, U Woggon et al. Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys Rev B, 68, 125316(2003).

    [66] S L Portalupi, G Hornecker, V Giesz et al. Bright phonon-tuned single-photon source. Nano Lett, 15, 6290(2015).

    [67] C Santori, D Fattal, J Vuckovic et al. Single-photon generation with InAs quantum dots. New J Phys, 6, 89(2004).

    [68] J Y Marzin. Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys Rev Lett, 73, 716(1994).

    [69] S Fafard, D Leonard, J L Merz et al. Selective excitation of the photoluminescence and the energy levels of ultrasmall InGaAs/GaAs quantum dots. Appl Phys Lett, 65, 1388(1994).

    [70] P Michler, A Kiraz, C Becher et al. A quantum dot single-photon turnstile device. Science, 290, 2282(2000).

    [71] H Benisty, H De Neve, C Weisbuch. Impact of planar microcavity effects on light extraction – part ii: selected exact simulations and role of photon recycling. IEEE J Quantum Electron, 34, 1632(1998).

    [72] V Giesz, S L Portalupi, T Grange et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys Rev B, 92, 161302(2015).

    [73] H Wang, Z C Duan, Y H Li et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 116, 213601(2016).

    [74]

    [75] T Müller, J Skiba-Szymanska, A B Krysa et al. A quantum light-emitting diode for the standard telecom window around 1550 nm. Nat Commun, 9, 862(2018).

    [76] C Santori, D Fattal, J Vučković et al. Indistinguishable photons from a single-photon device. Nature, 419, 594(2002).

    [77] L Hanschke, K A Fischer, S Appel et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inform, 4, 1(2018).

    [78] S Fischbach, A Kaganskiy, E B Y Tauscher et al. Efficient single-photon source based on a deterministically fabricated single quantum dot-microstructure with backside gold mirror. Appl Phys Lett, 111, 011106(2017).

    [79] K Tanaka, T Nakamura, W Takamatsu et al. Cavity-induced changes of spontaneous emission lifetime in one-dimensional semiconductor microcavities. Phys Rev Lett, 74, 3380(1995).

    [80] M Bayer, T L Reinecke, F Weidner et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys Rev Lett, 86, 3168(2001).

    [81] E Peter, P Senellart, D Martrou et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett, 95, 067401(2005).

    [82] E M Purcell. Spontaneous emission probabilities at radio frequencies. NATO ASI Series, 839(1995).

    [83] R J Thompson, Q A Turchette, O Carnal et al. Nonlinear spectroscopy in the strong-coupling regime of cavity qed. Phys Rev A, 57, 3084(1998).

    [84]

    [85] H Wang, H Hu, T H Chung et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability. Phys Rev Lett, 122, 113602(2019).

    [86] L P Nuttall, F S F Brossard, S A Lennon et al. Optical fabrication and characterisation of su-8 disk photonic waveguide heterostructure cavities. Opt Express, 25, 24615(2017).

    [87] T H Chung, G Juska, S T Moroni et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nat Photonics, 10, 782(2016).

    [88] Y H Huo, A Rastelli, O G Schmidt. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on gaas (001) substrate. Appl Phys Lett, 102, 152105(2013).

    [89] Y Chen, M Zopf, R Keil et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 9, 2994(2018).

    [90] J Liu, R Su, Y Wei et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 14, 586(2019).

    [91] Y Yamamoto, R E Slusher. Optical processes in microcavities. Phys Today, 46, 66(1993).

    [92] X Guo, X Zhou, J H Wang et al. Critical surface phase of 2(2Œ4) reconstructed zig-zag chains on inas(001). Thin Solid Films, 562, 326(2014).

    [93] M Gschrey, F Gericke, A Schüßler et al. In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Appl Phys Lett, 102, 251113(2013).

    [94] A Dousse, L Lanco, J Suffczyński et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using farfield optical lithography. Phys Rev Lett, 101, 267404(2008).

    [95] C Kistner, T Heindel, C Schneider et al. Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems. Opt Express, 16, 15006(2008).

    [96] T Kojima, K Kojima, T Asano et al. Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging. Appl Phys Lett, 102, 011110(2013).

    [97] A Badolato, K Hennessy, M Atatüre et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 308, 1158(2005).

    [98] S M Thon, M T Rakher, H Kim et al. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Appl Phys Lett, 94, 111115(2009).

    [99] M Notomi. Manipulating light with strongly modulated photonic crystals. Rep Prog Phys, 73, 096501(2010).

    [100] M Hijlkema, B Weber, H P Specht et al. A single-photon server with just one atom. Nat Phys, 3, 253(2007).

    [101] C Kurtsiefer, S Mayer, P Zarda et al. Stable solid-state source of single photons. Phys Rev Lett, 85, 290(2000).

    [102] M J Holmes, K Choi, S Kako et al. Room-temperature triggered single photon emission from a III–nitride site-controlled nanowire quantum dot. Nano Lett, 14, 982(2014).

    [103] A F Jarjour, R A Taylor, R A Oliver et al. Cavity-enhanced blue singlephoton emission from a single InGaN/GaN quantum dot. Appl Phys Lett, 91, 052101(2007).

    [104] S Deshpande, T Frost, A Hazari et al. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl Phys Lett, 105, 14(2014).

    [105] A Jarjour, R Oliver, A Tahraoui et al. Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot. Phys Rev Lett, 99, 197403(2007).

    [106] B P Reid, C Kocher, T Zhu et al. Non-polar InGaN quantum dot emission with crystal-axis oriented linear polarization. Appl Phys Lett, 106, 17(2015).

    [107] T Wang, T J Puchtler, S K Patra et al. Direct generation of linearly polarized single photons with a deterministic axis in quantum dots. Nanophotonics, 6, 1175(2017).

    [108] E Waks, K Inoue, C Santori et al. Quantum cryptography with a photon turnstile device. Extended Abstracts of the 2002 International Conference on Solid State Devices and Materials(2002).

    [109] T Bretagnon, P Lefebvre, P Valvin et al. Radiative lifetime of a single electron-hole pair in GaN/AlN quantum dots. Phys Rev B, 73, 113304(2006).

    [110] B P L Reid, T Zhu, C C S Chan et al. High temperature stability in non-polar (110) InGaN quantum dots: Exciton and biexciton dynamics. Phys Status Solidi C, 11, 702(2014).

    [111] S Kako, C Santori, K Hoshino et al. A gallium nitride single-photon source operating at 200 K. Nat Mater, 5, 887(2006).

    [112] M Arita, F Le Roux, M J Holmes et al. Ultraclean single photon emission from a gan quantum dot. Nano Lett, 17, 2902(2017).

    [113] M J Holmes, S Kako, K Choi et al. Single photons from a hot solid-state emitter at 350 K. ACS Photonics, 3, 543(2016).

    [114] Y Zhou, Z Wang, A Rasmita et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 4, eaar3580(2018).

    [115] S K Patra, T Wang, T J Puchtler et al. Theoretical and experimental analysis of radiative recombination lifetimes in nonpolar InGaN/GaN quantum dots. Phys Status Solidi B, 254, 8(2017).

    [116] Ž Ga, M Holmes, E Chernysheva et al. Emission of linearly polarized single photons from quantum dots contained in nonpolar. semipolar and polar sections of pencil-like InGaN/GaN nanowires. ACS Photonics, 4, 657(2017).

    [117] C Kindel, S Kako, T Kawano et al. Collinear polarization of exciton/biexciton photoluminescence from single hexagonal GaN quantum dots. Jpn J Appl Phys, 48, 04C116(2009).

    [118] S Sergent, S Kako, M Burger et al. Polarization properties of single zinc-blende GaN/AlN quantum dots. Phys Rev B, 90, 235312(2014).

    [119] A Lundskog, C W Hsu, K Fredrik Karlsson et al. Direct generation of linearly polarized photon emission with designated orientations from site-controlled ingan quantum dots. Light: Sci Appl, 3, e139(2014).

    [120] C Teng, L Zhang, T A Hill et al. Elliptical quantum dots as on-demandsingle photons sources with deterministic polarizationstates. Appl Phys Lett, 107, 191105(2015).

    [121] T J Puchtler, T Wang, C X Ren et al. Single-photon emission from m-plane InGaN quantum dots on GaN nanowires. Nano Lett, 16, 7779(2016).

    [122] C C Kocher, T J Puchtler, J C Jarman et al. Highly polarized electrically driven single-photon emission from a non-polar InGaN quantum dot. Appl Phys Lett, 111, 251108(2017).

    [123] N Mendelson, ZQ Xu, T T Tran et al. Engineering and tuning of quantum emitters in few-layer hexagonal boron nitride. ACS Nano, 13, 3132(2019).

    [124] R Bourrellier, S Meuret, A Tararan et al. Bright uv single photon emission at point defects in h-BN. Nano Lett, 16, 4317(2016).

    [125] L J Martínez, T Pelini, V Waselowski et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys Rev B, 94, 121405(2016).

    [126] T Vogl, G Campbell, B C Buchler et al. Fabrication and deterministic transfer of high-quality quantum emitters in hexagonal boron nitride. ACS Photonics, 5, 2305(2018).

    [127] A Kumar, T Low, K H Fung et al. Tunable light–matter interaction and the role of hyperbolicity in graphene–hbn system. Nano Lett, 15, 3172(2015).

    [128] S A Tawfik, S Ali, M Fronzi et al. Firstprinciples investigation of quantum emission from hbn defects. Nanoscale, 9, 13575(2017).

    [129] Y N Vil’k, V D Chupov, V E Shvaiko-Shvaikovskii et al. A theoretical analysis of the formation of nonstoichiometric defects in hexagonal boron nitride. Refract Ind Ceram, 42, 146(2001).

    [130] G Grosso, H Moon, B Lienhard et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 8, 705(2017).

    [131] T T Tran, C Elbadawi, D Totonjian et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 10, 7331(2016).

    [132] M Jana, R N Singh. Progress in cvd synthesis of layered hexagonal boron nitride with tunable properties and their applications. Int Mater Rev, 63, 162(2017).

    [133] J C Loredo, N A Zakaria, N Somaschi et al. Scalable performance in solid-state single-photon sources. Optica, 3, 433(2016).

    [134]

    [135] N Sangouard, C Simon, H de Riedmatten et al. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys, 83, 33(2011).

    [136] J H Weber, B Kambs, J Kettler et al. Two photon interference in the telecom c-band after frequency conversion of photons from remote quantum emitters. Nat Nanotechnol, 14, 23(2019).

    [137] J C Loredo, M A Broome, P Hilaire et al. Boson sampling with single-photon fock states from a bright solid-state source. Phys Rev Lett, 118, 130503(2017).

    [138] Y He, X Ding, Z E Su et al. Time-bin-encoded boson sampling with a single-photon device. Phys Rev Lett, 118, 190501(2017).

    [139] D E Chang, J I Cirac, H J Kimble. Self-organization of atoms along a nanophotonic waveguide. Phys Rev Lett, 110, 113606(2013).

    [140] J H Cho, Y M Kim, S H Lim et al. Strongly coherent single-photon emission from site-controlled ingan quantum dots embedded in GaN nanopyramids. ACS Photonics, 5, 439(2018).

    [141] C Carmesin, F Olbrich, T Mehrtens et al. Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom c-band up to 77 K. Phys Rev B, 98, 125407(2018).

    Xu Wang, Lei Xu, Yun Jiang, Zhouyang Yin, Christopher C. S. Chan, Chaoyong Deng, Robert A. Taylor. III–V compounds as single photon emitters[J]. Journal of Semiconductors, 2019, 40(7): 071906
    Download Citation