• Photonics Research
  • Vol. 8, Issue 12, 1958 (2020)
Shihao Sun1, Mingbo He1, Mengyue Xu1, Shengqian Gao1, Ziyan Chen1, Xian Zhang2, Ziliang Ruan2, Xiong Wu3, Lidan Zhou1, Lin Liu1, Chao Lu3, Changjian Guo2, Liu Liu4, Siyuan Yu1, and Xinlun Cai1、*
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510000, China
  • 2Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Higher-Education Mega-Center, Guangzhou, China
  • 3Department of Electronic and Information Engineering, Photonics Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
  • 4State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
  • show less
    DOI: 10.1364/PRJ.403167 Cite this Article Set citation alerts
    Shihao Sun, Mingbo He, Mengyue Xu, Shengqian Gao, Ziyan Chen, Xian Zhang, Ziliang Ruan, Xiong Wu, Lidan Zhou, Lin Liu, Chao Lu, Changjian Guo, Liu Liu, Siyuan Yu, Xinlun Cai. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform[J]. Photonics Research, 2020, 8(12): 1958 Copy Citation Text show less
    References

    [1] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [2] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [3] M. Asghari, A. Krishnamoorthy. Energy-efficient communication. Nat. Photonics, 5, 268-270(2011).

    [4] R. Won. Integrating silicon photonics. Nat. Photonics, 4, 498-499(2010).

    [5] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [6] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [7] E. Timurdogan, C. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts. An ultralow power athermal silicon modulator. Nat. Commun., 5, 4008(2014).

    [8] J. Lin, H. Sepehrian, L. A. Rusch, W. Shi. Single-carrier 72  GBaud 32QAM and 84  GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation. Opt. Express, 27, 5610-5619(2019).

    [9] D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. Le Roux, D. Bouville, S. Menezo, F. Bœuf, L. Vivien. Low loss 40  Gbit/s silicon modulator based on interleaved junctions and fabricated on 300  mm SOI wafers. Opt. Express, 21, 22471-22475(2013).

    [10] C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, J. E. Bowers. Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon. Optica, 3, 1483-1488(2016).

    [11] M. Li, L. Wang, X. Li, X. Xiao, S. Yu. Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications. Photon. Res., 6, 109-116(2018).

    [12] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [13] Y. Tang, J. D. Peters, J. E. Bowers. Over 67  GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3  μm transmission. Opt. Express, 20, 11529-11535(2012).

    [14] F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, S. Abel. A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Lightwave Technol., 37, 1456-1462(2019).

    [15] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics, 1, 407-410(2007).

    [16] D. Janner, D. Tulli, M. García-Granda, M. Belmonte, V. Pruneri. Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photon. Rev., 3, 301-313(2009).

    [17] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [18] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [19] A. Rao, S. Fathpour. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron., 24, 3400114(2018).

    [20] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics, 1, 407-410(2007).

    [21] A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, S. Fathpour. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50  GHz. Opt. Lett., 41, 5700-5703(2016).

    [22] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810-14816(2018).

    [23] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).

    [24] R. Baets, B. Kuyken. High speed phase modulators for silicon photonic integrated circuits: a role for lithium niobate?. Adv. Photon., 1, 030502(2019).

    [25] A. N. R. Ahmed, S. Nelan, S. Shi, P. Yao, A. Mercante, D. W. Prather. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett., 45, 1112-1115(2020).

    [26] A. Honardoost, F. A. Juneghani, R. Safian, S. Fathpour. Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators. Opt. Express, 27, 6495-6501(2019).

    [27] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s–1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [28] J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, S. Gille. Analysis and control of the DC drift in LiNbO3-based Mach–Zehnder modulators. J. Lightwave Technol., 29, 1522-1534(2011).

    [29] H. Kawakami, E. Yoshida, Y. Miyamoto. Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation. J. Lightwave Technol., 30, 962-968(2012).

    [30] Y. Li, Y. Zhang, Y. Huang. Any bias point control technique for Mach–Zehnder Modulator. IEEE Photon. Technol. Lett., 25, 2412-2415(2013).

    [31] L. L. Wang, T. Kowalcyzk. A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. J. Lightwave Technol., 28, 1703-1706(2010).

    [32] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    CLP Journals

    [1] Mengyue Xu, Mingbo He, Yuntao Zhu, Lin Liu, Lifeng Chen, Siyuan Yu, Xinlun Cai. Integrated thin film lithium niobate Fabry–Perot modulator [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060003

    [2] Min Tan, Kaixuan Ye, Da Ming, Yuhang Wang, Zhicheng Wang, Li Jin, Junbo Feng. Towards electronic-photonic-converged thermo-optic feedback tuning[J]. Journal of Semiconductors, 2021, 42(2): 023104

    [3] Xuecheng Liu, Bing Xiong, Changzheng Sun, Jian Wang, Zhibiao Hao, Lai Wang, Yanjun Han, Hongtao Li, Jiadong Yu, Yi Luo. Wideband thin-film lithium niobate modulator with low half-wave-voltage length product[J]. Chinese Optics Letters, 2021, 19(6): 060016

    Shihao Sun, Mingbo He, Mengyue Xu, Shengqian Gao, Ziyan Chen, Xian Zhang, Ziliang Ruan, Xiong Wu, Lidan Zhou, Lin Liu, Chao Lu, Changjian Guo, Liu Liu, Siyuan Yu, Xinlun Cai. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform[J]. Photonics Research, 2020, 8(12): 1958
    Download Citation