• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 2, 163 (2020)
Yuan-Yuan PAN1, Li-Na WANG2、*, Jian-Wei LIU2, Hui WANG2, and Shuang CHEN2
Author Affiliations
  • 1Department of Geriatric Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital,Chengdu60072, China
  • 2School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu610054, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.02.005 Cite this Article
    Yuan-Yuan PAN, Li-Na WANG, Jian-Wei LIU, Hui WANG, Shuang CHEN. Design and experiments of 94 GHz Gyrotron for non-lethal biological effects of millimeter wave radiation[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 163 Copy Citation Text show less
    References

    [1] M V Kartikeyan, E Bore, M K A Thumm. Gyrotrons high power microwave and millimeter wave technology. NY(2004).

    [2] M Y Glyavin, N S Ginzburg, A L Goldenberg. THz gyrotrons: status and possible optimizations. Terahertz Sci. Tech, 5, 67-77(2012).

    [3] D Weide. Applications and outlook for electronic terahertz technology. Opt.Photonics News, 14, 48-53(2003).

    [4] P H Siegel. Terahertz technology in biology and medicine. IEEE Trans. Microw Theory Tech, 52, 2438-2447(2004).

    [5] V L Granatstein, G S Nusinovich. Detecting excess ionizing radiation by electromagnetic breakdown of air. . Appl. Phys, 108, 063304-063309(2010).

    [6] S Sabchevski, T Idehara. 1. 2(2011).

    [7] D L Woolard, E R Brown, M Pepper. Terahertz frequency sensing and imaging: A time of reckoning future applications. Proceedings of the IEEE, 93, 1722-1743(2005).

    [8] Q X Zhao, Y Sheng. The nonlinear designs and experiments on a 0.42-THz second harmonic gyrotron with complex cavity. IEEE Transactions on Electron Devices, 64, 564-570(2017).

    [9] G Guo, X Niu, Y Liu. e2593. Devices and Fields(2019).

    [10] G Zhao, Q Z Xue, Y Wang. Design of quasi-optical mode converter for 170-GHz TE32,9-Mode high-power gyrotron. IEEE Transactions on Plasma Science, 47, 2582-2589(2019).

    [11] G G Denisov, M I Petelin, D V Vinogradov. 6. PCT Gazette, 16, 47-49(1990).

    [12] V Dmitry, G G Denisov, M I Petelin. Art. no, 19291(1992).

    [13] J Jin, M Thumm, B Piosczyk. Novel numerical method for the analysis and synthesis of the fields in highly oversized waveguide mode converters. IEEE Trans. Microw. Theory Tech, 57, 1661-1668(2009).

    [14] J Jin, M Thumm, G Gantenbein. A numerical synthesis method for hybrid-type high-power gyrotron launchers. IEEE Trans. Microw. Theory Techn, 65, 699-706(2017).

    [15] X Niu, C Lei, Y Liu. A study on 94 GHz low-voltage, low-current gyrotron. IEEE Transactions on Electron Devices, 60, 3907-3912(2013).

    [16] Q Liu, Y Liu, X Niu. Theoretical investigation on a multifrequency multimode gyrotron at Ka-band. IEEE Transactions on Plasma Science, 45, 2955-2961(2017).

    [17] P Ruifeng, G S Nusinovich, O V Sinitsyn. Numerical study of efficiency for a 670GHz gyrotron. Phys. Plasmas, 18, 023107(2011).

    [18] A Bogdashov, G G Denisov. Asymptotic theory of high-efficiency converters of higher-order waveguide modes into eigenwaves of open mirror lines. Radiophys. Quant. Electon, 47, 283-296(2004).

    [19] J B Jin, B Piosczyk, M Thumm. Quasi-optical mode converter/mirror system for a high-power coaxial-cavity gyrotron. IEEE Trans. Plasma Sci, 34, 1508-1515(2006).

    Yuan-Yuan PAN, Li-Na WANG, Jian-Wei LIU, Hui WANG, Shuang CHEN. Design and experiments of 94 GHz Gyrotron for non-lethal biological effects of millimeter wave radiation[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 163
    Download Citation