• Opto-Electronic Advances
  • Vol. 1, Issue 5, 180009-1 (2018)
Arash Nemati1、2, Qian Wang1, Minghui Hong2, and Jinghua Teng1、*
Author Affiliations
  • 1Institute of Materials Research & Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singa-pore 138634, Singapore
  • 2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
  • show less
    DOI: 10.29026/oea.2018.180009 Cite this Article
    Arash Nemati, Qian Wang, Minghui Hong, Jinghua Teng. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009-1 Copy Citation Text show less
    References

    [1] R A Shelby, D R Smith, S Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [2] D R Smith, W J Padilla, D C Vier, S C Nemat-Nasser, S Schultz. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett, 84, 4184-4187(2000).

    [3] D Schurig, J J Mock, B J Justice, S A Cummer, J B Pendry et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [4] N I Landy, S Sajuyigbe, J J Mock, D R Smith, W J Padilla. Perfect metamaterial absorber. Phys Rev Lett, 100, 207402(2008).

    [5] J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [6] D R Smith, D C Vier, T Koschny, C M Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E, 71, 036617(2005).

    [7] A Vakil, N Engheta. Transformation optics using graphene. Science, 332, 1291-1294(2011).

    [8] J Valentine, S Zhang, T Zentgraf, E Ulin-Avila, D A Genov et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376-379(2008).

    [9] C M Soukoulis, M Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics, 5, 523-530(2011).

    [10] S Jahani, Z Jacob. All-dielectric metamaterials. Nat Nanotechnol, 11, 23-36(2016).

    [11] U Leonhardt. Optical conformal mapping. Science, 312, 1777-1780(2006).

    [12] D R Smith, J B Pendry, M C Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [13] V M Shalaev. Optical negative-index metamaterials. Nat Photonics, 1, 41-48(2007).

    [14] A Boltasseva, V M Shalaev. Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials, 2, 1-17(2008).

    [15] N F Yu, F Capasso. Flat optics with designer metasurfaces. Nat Mater, 13, 139-150(2014).

    [16] F Aieta, P Genevet, M A Kats, N F Yu, R Blanchard et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett, 12, 4932-4936(2012).

    [17] A V Kildishev, A Boltasseva, V M Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [18] D M Lin, P Y Fan, E Hasman, M L Brongersma. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).

    [19] C L Holloway, E F Kuester, J A Gordon, J O'Hara, J Booth et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag, 54, 10-35(2012).

    [20] F Falcone, T Lopetegi, M A G Laso, J D Baena, J Bonache et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett, 93, 197401(2004).

    [21] X J Ni, A V Kildishev, V M Shalaev. Metasurface holograms for visible light. Nat Commun, 4, 2807(2013).

    [22] A Arbabi, Y Horie, M Bagheri, A Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol, 10, 937-943(2015).

    [23] Y M Yang, W Y Wang, P Moitra, I I Kravchenko, D P Briggs et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett, 14, 1394-1399(2014).

    [24] M Khorasaninejad, W T Chen, R C Devlin, J Oh, A Y Zhu et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [25] A Pors, M G Nielsen, R L Eriksen, S I Bozhevolnyi. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett, 13, 829-834(2013).

    [26] M Decker, I Staude, M Falkner, J Dominguez, D N Neshev et al. High-efficiency dielectric Huygens' surfaces. Adv Opt Mater, 3, 813-820(2015).

    [27] P Lalanne, S Astilean, P Chavel, E Cambril, H Launois. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J Opt Soc Am A, 16, 1143-1156(1999).

    [28] K Sarabandi, N Behdad. A frequency selective surface with miniaturized elements. IEEE Trans Antennas Propag, 55, 1239-1245(2007).

    [29] F Bayatpur, K Sarabandi. Single-layer high-order miniaturized-element frequency-selective surfaces. IEEE Trans Microw Theory Tech, 56, 774-781(2008).

    [30] BehdadNMiniaturized-element frequency selective surfaces (MEFSS) using sub-wavelength periodic structures. In Proceedings of 2008 IEEE Radio and Wireless Symposium 347-350 (IEEE, 2008)Proceedings of 2008 IEEE Radio and Wireless Symposium 347-350 (IEEE, 2008); http://doi.org/10.1109/RWS.2008.4463500. http://doi.org/10.1109/RWS.2008.4463500

    [31] G Y Si, Y H Zhao, H Liu, S Teo, M S Zhang et al. Annular aperture array based color filter. Appl Phys Lett, 99, 033105(2011).

    [32] G Y Si, Y H Zhao, J T Lv, M Q Lu, F W Wang et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale, 5, 6243-6248(2013).

    [33] G Y Si, Y H Zhao, E S P Leong, J T Lv, Y J Liu. Incident-angle dependent color tuning from a single plasmonic chip. Nanotechnology, 25, 455203(2014).

    [34] X X Jiang, E S P Leong, Y J Liu, G Y Si. Tuning plasmon resonance in depth-variant plasmonic nanostructures. Mater Des, 96, 64-67(2016).

    [35] J McVay, N Engheta, A Hoorfar. High impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microw Wirel Compon Lett, 14, 130-132(2004).

    [36] Z Bayraktar, J P Turpin, D H Werner. Nature-inspired optimization of high-impedance metasurfaces with ultrasmall interwoven unit cells. IEEE Antennas Wirel Propag Lett, 10, 1563-1566(2011).

    [37] VallecchiALangleyR JSchuchinskyA GHigh-impedance metasurfaces with interwoven conductor patterns. In Proceedings of the 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics 280-282 (IEEE, 2014)Proceedings of the 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics 280-282 (IEEE, 2014); http://doi.org/10.1109/MetaMaterials.2014.6948675. http://doi.org/10.1109/MetaMaterials.2014.6948675

    [38] G Y Si, E S P Leong, W Pan, C C Chum, Y J Liu. Plasmon-induced transparency in coupled triangle-rod arrays. Nanotechnology, 26, 025201(2014).

    [39] M Khorasaninejad, Z Shi, A Y Zhu, W T Chen, V Sanjeev et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett, 17, 1819-1824(2017).

    [40] N F Yu, P Genevet, M A Kats, F Aieta, J P Tetienne et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [41] X Z Chen, L L Huang, H Mühlenbernd, G X Li, B F Bai et al. Dual-polarity plasmonic metalens for visible light. Nat Commun, 3, 1198(2012).

    [42] H Liu, B Wang, L Ke, J Deng, C C Chum et al. High aspect subdiffraction-limit photolithography via a silver superlens. Nano Lett, 12, 1549-1554(2012).

    [43] M Q Mehmood, S T Mei, S Hussain, K Huang, S Y Siew et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater, 28, 2533-2539(2016).

    [44] F Qin, L Ding, L Zhang, F Monticone, C C Chum et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv, 2, e1501168(2016).

    [45] S J Byrnes, A Lenef, F Aieta, F Capasso. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt Express, 24, 5110-5124(2016).

    [46] H T Chen, W J Padilla, M J Cich, A K Azad, R D Averitt et al. A metamaterial solid-state terahertz phase modulator. Nat Photonics, 3, 148-151(2009).

    [47] Y W Huang, H W Lee, R Sokhoyan, R A Pala, K Thyagarajan et al. Gate-tunable conducting oxide metasurfaces. Nano Lett, 16, 5319-5325(2016).

    [48] J Y Ou, E Plum, J F Zhang, N I Zheludev. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat Nanotechnol, 8, 252-255(2013).

    [49] L Ju, B S Geng, J Horng, C Girit, M Martin et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol, 6, 630-634(2011).

    [50] S H Lee, M Choi, T T Kim, S Lee, M Liu et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater, 11, 936-941(2012).

    [51] Y L Bian, C Wu, H Q Li, J W Zhai. A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film. Appl Phys Lett, 104, 042906(2014).

    [52] R Singh, A K Azad, Q X Jia, A J Taylor, H T Chen. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Opt Lett, 36, 1230-1232(2011).

    [53] B X Wang, X Zhai, G Z Wang, W Q Huang, L L Wang. Frequency tunable metamaterial absorber at deep-subwavelength scale. Opt Mater Express, 5, 227-235(2015).

    [54] J Y Ou, E Plum, J F Zhang, N I Zheludev. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv Mater, 28, 729-733(2016).

    [55] J Y Ou, E Plum, L Jiang, N I Zheludev. Reconfigurable photonic metamaterials. Nano Lett, 11, 2142-2144(2011).

    [56] H T Chen, J F O'Hara, A K Azad, A J Taylor, R D Averitt et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photonics, 2, 295-298(2008).

    [57] A J Huber, D Kazantsev, F Keilmann, J Wittborn, R Hillenbrand. Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy. Adv Mater, 19, 2209-2212(2007).

    [58] L Y Deng, J H Teng, H W Liu, Q Y Wu, J Tang et al. Direct optical tuning of the terahertz plasmonic response of Insb subwavelength gratings. Adv Opt Mater, 1, 128-132(2013).

    [59] Y Zhu, X Y Hu, Y L Fu, H Yang, Q H Gong. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range. Sci Rep, 3, 2338(2013).

    [60] Y Zhu, X Y Hu, H Yang, Q H Gong. Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials. Appl Phys Lett, 104, 211108(2014).

    [61] F Zhang, X Y Hu, Y Zhu, Y L Fu, H Yang et al. Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials. Appl Phys Lett, 102, 181109(2013).

    [62] Y Zhou, X Y Hu, C Li, H Yang, Q H Gong. All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range. J Mod Opt, 65, 206-212(2018).

    [63] G Y Si, E S P Leong, X X Jiang, J T Lv, J Lin et al. All-optical, polarization-insensitive light tuning properties in silver nanorod arrays covered with photoresponsive liquid crystals. Phys Chem Chem Phys, 17, 13223-13227(2015).

    [64] M Lapine, I V Shadrivov, D A Powell, Y S Kivshar. Magnetoelastic metamaterials. Nat Mater, 11, 30-33(2012).

    [65] N I Zheludev, Y S Kivshar. From metamaterials to metadevices. Nat Mater, 11, 917-924(2012).

    [66] J Valente, J Y Ou, E Plum, I J Youngs, N I Zheludev. A magneto-electro-optical effect in a plasmonic nanowire material. Nat Commun, 6, 7021(2015).

    [67] Q K Liu, Y X Cui, D Gardner, X Li, S L He et al. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett, 10, 1347-1353(2010).

    [68] F L Zhang, L Kang, Q Zhao, J Zhou, X P Zhao et al. Magnetically tunable left handed metamaterials by liquid crystal orientation. Opt Express, 17, 4360-4366(2009).

    [69] H Tao, A C Strikwerda, K Fan, W J Padilla, X Zhang et al. Reconfigurable terahertz metamaterials. Phys Rev Lett, 103, 147401(2009).

    [70] S M Kamali, E Arbabi, A Arbabi, Y Horie, A Faraon. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev, 10, 1002-1008(2016).

    [71] B Gupta, S Pandey, A Nahata, T Zhang, A Nahata. Bistable physical geometries for terahertz plasmonic structures using shape memory alloys. Adv Opt Mater, 5, 1601008(2017).

    [72] Z C Chen, M Rahmani, Y D Gong, C T Chong, M H Hong. Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability. Adv Mater, 24, OP143-OP147(2012).

    [73] H S Ee, R Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett, 16, 2818-2823(2016).

    [74] Y H Fu, A Q Liu, W M Zhu, X M Zhang, D P Tsai et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv Funct Mater, 21, 3589-3594(2011).

    [75] W M Zhu, A Q Liu, T Bourouina, D P Tsai, J H Teng et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat Commun, 3, 1274(2012).

    [76] W M Zhu, A Q Liu, X M Zhang, D P Tsai, T Bourouina et al. Switchable magnetic metamaterials using micromachining processes. Adv Mater, 23, 1792-1796(2011).

    [77] C P Ho, P Pitchappa, Y S Lin, C Y Huang, P Kropelnicki et al. Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics. Appl Phys Lett, 104, 161104(2014).

    [78] T Hand, S Cummer. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antennas Wirel Propag Lett, 6, 401-404(2007).

    [79] F S Ma, Y S Lin, X H Zhang, C Lee. Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl, 3, e171(2014).

    [80] T Kan, A Isozaki, N Kanda, N Nemoto, K Konishi et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat Commun, 6, 8422(2015).

    [81] Z L Han, K Kohno, H Fujita, K Hirakawa, H Toshiyoshi. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. Opt Express, 22, 21326-21339(2014).

    [82] P Pitchappa, C P Ho, L Dhakar, C Lee. Microelectromechanically reconfigurable interpixelated metamaterial for independent tuning of multiple resonances at terahertz spectral region. Optica, 2, 571-578(2015).

    [83] Y S Lin, Y Qian, F S Ma, Z Liu, P Kropelnicki et al. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl Phys Lett, 102, 111908(2013).

    [84] E Arbabi, A Arbabi, S M Kamali, Y Horie, M Faraji-Dana et al. MEMS-tunable dielectric metasurface lens. Nat Commun, 9, 812(2018).

    [85] J Park, J H Kang, X G Liu, M L Brongersma. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci Rep, 5, 15754(2015).

    [86] J Park, J H Kang, S J Kim, X G Liu, M L Brongersma. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett, 17, 407-413(2017).

    [87] J Kim, H Son, D J Cho, B S Geng, W Regan et al. Electrical control of optical plasmon resonance with graphene. Nano Lett, 12, 5598-5602(2012).

    [88] Y Yao, R Shankar, M A Kats, Y Song, J Kong et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett, 14, 6526-6532(2014).

    [89] H G Yan, X S Li, B Chandra, G Tulevski, Y Q Wu et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol, 7, 330-334(2012).

    [90] A Fallahi, J Perruisseau-Carrier. Design of tunable biperiodic graphene metasurfaces. Phys Rev B, 86, 195408(2012).

    [91] B Lee, J Park, G H Han, H S Ee, C H Naylor et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett, 15, 3646-3653(2015).

    [92] Y G Chen, T S Kao, B Ng, X Li, X G Luo et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt Express, 21, 13691-13698(2013).

    [93] Q Wang, G H Yuan, K S Kiang, K Sun, B Gholipour et al. Reconfigurable phase-change photomask for grayscale photolithography. Appl Phys Lett, 110, 201110(2017).

    [94] T H Zhang, S T Mei, Q Wang, H Liu, C T Lim et al. Reconfigurable optical manipulation by phase change material waveguides. Nanoscale, 9, 6895-6900(2017).

    [95] X Y Peng, B Wang, J H Teng, J B K Kana, X H Zhang. Active near infrared linear polarizer based on VO2 phase transition. J Appl Phys, 114, 163103(2013).

    [96] D C Wang, L C Zhang, Y H Gu, M Q Mehmood, Y D Gong et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci Rep, 5, 15020(2015).

    [97] Q Wang, E T F Rogers, B Gholipour, C M Wang, G H Yuan et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics, 10, 60-65(2016).

    [98] Y G Chen, X Li, X G Luo, S A Maier, M H Hong. Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photonics Res, 3, 54-57(2015).

    [99] Q Zhao, L Kang, B Du, B Li, J Zhou et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl Phys Lett, 90, 011112(2007).

    [100] D Shrekenhamer, W C Chen, W J Padilla. Liquid crystal tunable metamaterial absorber. Phys Rev Lett, 110, 177403(2013).

    [101] Y J Liu, G Y Si, E S P Leong, N Xiang, A J Danner et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater, 24, OP131-OP135(2012).

    [102] S M Xiao, U K Chettiar, A V Kildishev, V Drachev, I C Khoo et al. Tunable magnetic response of metamaterials. Appl Phys Lett, 95, 033115(2009).

    [103] X D Wang, D H Kwon, D H Werner, I C Khoo, A V Kildishev et al. Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Appl Phys Lett, 91, 143122(2007).

    [104] K Stratford, O Henrich, J S Lintuvuori, M E Cates, D Marenduzzo. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials. Nat Commun, 5, 3954(2014).

    [105] H T Dai, L Chen, B Zhang, G Y Si, Y J Liu. Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation. Opt Lett, 40, 2723-2726(2015).

    [106] G Y Si, Y H Zhao, E S P Leong, Y J Liu. Liquid-crystal-enabled active plasmonics: a review. Materials, 7, 1296-1317(2014).

    [107] H T Chen, W J Padilla, J M O Zide, A C Gossard, A J Taylor et al. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [108] S Savo, D Shrekenhamer, W J Padilla. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv Opt Mater, 2, 275-279(2014).

    [109] J Sautter, I Staude, M Decker, E Rusak, D N Neshev et al. Active tuning of all-dielectric metasurfaces. ACS Nano, 9, 4308-4315(2015).

    [110] J W Gao, K Kempa, M Giersig, E M Akinoglu, B Han et al. Physics of transparent conductors. Adv Phys, 65, 553-617(2016).

    [111] P P Edwards, A Porch, M O Jones, D V Morgan, R M Perks. Basic materials physics of transparent conducting oxides. Dalton Trans, 2995-3002(2995).

    [112] K Chopra, S Major, D K Pandya. Transparent conductors—a status review. Thin Solid Films, 102, 1-46(1983).

    [113] M A Riza, M A Ibrahim, U C Ahamefula, M A M Teridi, N A Ludin et al. Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part Ⅰ-Material developments. Solar Energy, 137, 371-378(2016).

    [114] M A Riza, M A Ibrahim, U C Ahamefula, M A M Teridi, N A Ludin et al. Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part Ⅱ-Synthesis and deposition. Solar Energy, 139, 309-317(2016).

    [115] M Silveirinha, N Engheta. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys Rev Lett, 97, 157403(2006).

    [116] A Alu, M G Silveirinha, A Salandrino, N Engheta. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys Rev B, 75, 155410(2007).

    [117] G V Naik, V M Shalaev, A Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv Mater, 25, 3264-3294(2013).

    [118] G V Naik, J Kim, A Boltasseva. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt Mater Express, 1, 1090-1099(2011).

    [119] E Feigenbaum, K Diest, H A Atwater. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett, 10, 2111-2116(2010).

    [120] K F Shi, R R Haque, B Y Zhao, R C Zhao, Z L Lu. Broadband electro-optical modulator based on transparent conducting oxide. Opt Lett, 39, 4978-4981(2014).

    [121] Y Zhu, X Y Hu, Z Chai, H Yang, Q H Gong. Active control of chirality in nonlinear metamaterials. Appl Phys Lett, 106, 091109(2015).

    [122] J L Humphrey, D Kuciauskas. Optical susceptibilities of supported indium tin oxide thin films. J Appl Phys, 100, 113123(2006).

    [123] S Kasap, P Capper. Springer Handbook of Electronic and Photonic Materials(2006).

    [124] A Ahmed, I A Goldthorpe, A K Khandani. Electrically tunable materials for microwave applications. Appl Phys Rev, 2, 011302(2015).

    [125] X Y Yang, J H Yang, X Y Hu, Y Zhu, H Yang et al. Multilayer-WS2: ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications. Appl Phys Lett, 107, 081110(2015).

    [126] X Y Hu, Y B Zhang, Y L Fu, H Yang, Q H Gong. Low-power and ultrafast all-optical tunable nanometer-scale photonic metamaterials. Adv Mater, 23, 4295-4300(2011).

    [127] Y Zhou, X Y Yang, X Y Hu, H Yang, Q H Gong. Multilayer-MoS2-microsheet/(Nano-Au:LiNbO3) for all-optical tunable metamaterial-induced transparency. J Opt, 17, 105102(2015).

    [128] L Bibbò, K Khan, Q Liu, M Lin, Q Wang et al. Tunable narrowband antireflection optical filter with a metasurface. Photonics Res, 5, 500-506(2017).

    [129] C Y Luo, D Li, Q Luo, J Yue, P Gao et al. Design of a tunable multiband terahertz waves absorber. J Alloys Compd, 652, 18-24(2015).

    [130] R Yahiaoui, H Němec, P Kužel, F Kadlec, C Kadlec et al. Tunable THz metamaterials based on an array of paraelectric SrTiO3 rods. Appl Phys A, 103, 689-692(2011).

    [131] B X Khuyen, B S Tung, Y J Yoo, Y J Kim, V D Lam et al. Ultrathin metamaterial-based perfect absorbers for VHF and THz bands. Curr Appl Phys, 16, 1009-1014(2016).

    [132] C Y Luo, Z Z Li, Z H Guo, J Yue, Q Luo et al. Tunable metamaterial dual-band terahertz absorber. Solid State Commun, 222, 32-36(2015).

    [133] R G Peng, Z Q Xiao, Q Zhao, F L Zhang, Y G Meng et al. Temperature-controlled chameleonlike cloak. Phys Rev X, 7, 011033(2017).

    [134] Y J Zhao, B W Li, C W Lan, K Bi, Z W Qu. Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range. Opt Express, 25, 22158-22163(2017).

    [135] L H Yeh, J F Kiang. Microwave tunable metasurfaces implemented with ferroelectric materials and periodical copper wires. Prog Electromagn Res, 37, 191-202(2014).

    [136] Z B Gong, C Li, X Y Hu, H Yang, Q H Gong. Active control of highly efficient third-harmonic generation in ultrathin nonlinear metasurfaces. Opt Mater, 60, 552-558(2016).

    [137] Z C Ma, Z M Xu, C Y Luo, J Peng, Z P Li et al. Dynamical thermal metamaterial response at terahertz frequencies. Ferroelectrics, 507, 4-11(2017).

    [138] C Y Luo, D Li, J Q Yao, F R Ling. Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface. J Electromagn Waves Appl, 29, 2512-2522(2015).

    [139] L Wu, T Du, N N Xu, C F Ding, H Li et al. A new Ba0.6Sr0.4TiO3-Silicon hybrid metamaterial device in terahertz regime. Small, 12, 2610-2615(2016).

    [140] K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang et al. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [141] K S Novoselov, A K Geim, S V Morozov, D Jiang, M I Katsnelson et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200(2005).

    [142] F Wang, Y B Zhang, C S Tian, C Girit, A Zettl et al. Gate-variable optical transitions in graphene. Science, 320, 206-209(2008).

    [143] X L Zhao, C Yuan, L Zhu, J Q Yao. Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nanoscale, 8, 15273-15280(2016).

    [144] P A Huidobro, M Kraft, S A Maier, J B Pendry. Graphene as a tunable anisotropic or isotropic plasmonic metasurface. Acs Nano, 10, 5499-5506(2016).

    [145] G Yao, F R Ling, J Yue, C Y Luo, Q Luo et al. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photonics J, 8, 7800808(2016).

    [146] N Dabidian, I Kholmanov, A B Khanikaev, K Tatar, S Trendafilov et al. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photonics, 2, 216-227(2015).

    [147] M M Jadidi, A B Sushkov, R L Myers-Ward, A K Boyd, K M Daniels et al. Tunable terahertz hybrid metal-graphene plasmons. Nano Lett, 15, 7099-7104(2015).

    [148] X Y He, Z Y Zhao, W Z Shi. Graphene-supported tunable near-IR metamaterials. Opt Lett, 40, 178-181(2015).

    [149] Y J Cai, J F Zhu, Q H Liu. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl Phys Lett, 106, 043105(2015).

    [150] B Vasić, M M Jakovljević, G Isić, R Gajić. Tunable metamaterials based on split ring resonators and doped graphene. Appl Phys Lett, 103, 011102(2013).

    [151] P Q Liu, I J Luxmoore, S A Mikhailov, N A Savostianova, F Valmorra et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nat Commun, 6, 8969(2015).

    [152] J X Li, P Yu, H Cheng, W W Liu, Z C Li et al. Optical polarization encoding using graphene-loaded plasmonic metasurfaces. Adv Opt Mater, 4, 91-98(2016).

    [153] Y P Zhang, T T Li, Q Chen, H Y Zhang, J F O'Hara et al. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies. Sci Rep, 5, 18463(2015).

    [154] X Y He, F T Lin, F Liu, W Z Shi. Terahertz tunable graphene Fano resonance. Nanotechnology, 27, 485202(2016).

    [155] Q Li, Z Tian, X Q Zhang, N N Xu, R Singh et al. Dual control of active graphene-silicon hybrid metamaterial devices. Carbon, 90, 146-153(2015).

    [156] C Argyropoulos. Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Opt Express, 23, 23787-23797(2015).

    [157] X Y He. Tunable terahertz graphene metamaterials. Carbon, 82, 229-237(2015).

    [158] Y C Fan, N H Shen, T Koschny, C M Soukoulis. Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics, 2, 151-156(2015).

    [159] N Papasimakis, S Thongrattanasiri, N I Zheludev, F J G de Abajo. The magnetic response of graphene split-ring metamaterials. Light-Sci Appl, 2, e78(2013).

    [160] H Cheng, S Q Chen, P Yu, J X Li, B Y Xie et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl Phys Lett, 103, 223102(2013).

    [161] G Yao, F R Ling, J Yue, C Y Luo, J Ji et al. Dual-band tunable perfect metamaterial absorber in the THz range. Opt Express, 24, 1518-1527(2016).

    [162] M A Othman, C Guclu, F Capolino. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt Express, 21, 7614-7632(2013).

    [163] A Kumar, T Low, K H Fung, P Avouris, N X Fang. Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Lett, 15, 3172-3180(2015).

    [164] B F Zhu, G B Ren, S W Zheng, Z Lin, S S Jian. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt Express, 21, 17089-17096(2013).

    [165] W R Zhu, F J Xiao, M Kang, D Sikdar, M Premaratne. Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite. Appl Phys Lett, 104, 051902(2014).

    [166] H Dong, C Conti, A Marini, F Biancalana. Terahertz relativistic spatial solitons in doped graphene metamaterials. J Phys B-At Mol Opt Phys, 46, 155401(2013).

    [167] X H Yin, T Steinle, L L Huang, T Taubner, M Wuttig et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light-Sci Appl, 6, e17016(2017).

    [168] T Cao, C W Wei, R E Simpson, L Zhang, M J Cryan. Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity. Sci Rep, 4, 4463(2014).

    [169] R Alaee, M Albooyeh, S Tretyakov, C Rockstuhl. Phase-change material-based nanoantennas with tunable radiation patterns. Opt Lett, 41, 4099-4102(2016).

    [170] T Cao, C W Wei, L B Mao. Ultrafast tunable chirped phase-change metamaterial with a low power. Opt Express, 23, 4092-4105(2015).

    [171] S G C Carrillo, G R Nash, H Hayat, M J Cryan, M Klemm et al. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. Opt Express, 24, 13563-13573(2016).

    [172] T Cao, C W Wei, R E Simpson, L Zhang, M J Cryan. Rapid phase transition of a phase-change metamaterial perfect absorber. Opt Mater Express, 3, 1101-1110(2013).

    [173] T Cao, L Zhang, R E Simpson, M J Cryan. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J Opt Soc Am B, 30, 1580-1585(2013).

    [174] L F Zou, M Cryan, M Klemm. Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects. Opt Express, 22, 24142-24148(2014).

    [175] T Cao, C W Wei, L B Mao. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism. Sci Rep, 5, 14666(2015).

    [176] T Cao, L Zhang, R E Simpson, C W Wei, M J Cryan. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Opt Express, 21, 27841-27851(2013).

    [177] X H Yin, M Sch ferling, A K U Michel, A Tittl, M Wuttig et al. Active Chiral Plasmonics. Nano Lett, 15, 4255-4260(2015).

    [178] T Cao, Y Li, C W Wei, Y M Qiu. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials. Opt Express, 25, 9911-9925(2017).

    [179] T Cao, R E Simpson, M J Cryan. Study of tunable negative index metamaterials based on phase-change materials. J Opt Soc Am B, 30, 439-444(2013).

    [180] B Gholipour, J F Zhang, K F MacDonald, D W Hewak, N I Zheludev. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv Mater, 25, 3050-3054(2013).

    [181] A K U Michel, P Zalden, D N Chigrin, M Wuttig, A M Lindenberg et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics, 1, 833-839(2014).

    [182] A K U Michel, D N Chigrin, T W W Ma, K Sch nauer, M Salinga et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett, 13, 3470-3475(2013).

    [183] P N Li, X S Yang, T W W Ma, J Hanss, M Lewin et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat Mater, 15, 870-875(2016).

    [184] A Karvounis, B Gholipour, K F MacDonald, N I Zheludev. All-dielectric phase-change reconfigurable metasurface. Appl Phys Lett, 109, 051103(2016).

    [185] C H Chu, M L Tseng, J Chen, P C Wu, Y H Chen et al. Active dielectric metasurface based on phase‐change medium. Laser Photonics Rev, 10, 986-994(2016).

    [186] Q Wang, J Maddock, E T F Rogers, T Roy, C Craig et al. 1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage. Appl Phys Lett, 104, 121105(2014).

    [187] R Naorem, G Dayal, S A Ramakrishna, B Rajeswaran, A M Umarji. Thermally switchable metamaterial absorber with a VO2 ground plane. Opt Commun, 346, 154-157(2015).

    [188] H Kocer, S Butun, B Banar, K Wang, S Tongay et al. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl Phys Lett, 106, 161104(2015).

    [189] P B Savaliya, A Thomas, R Dua, A Dhawan. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials. Opt Express, 25, 23755-23772(2017).

    [190] P J Guo, M S Weimer, J D Emery, B T Diroll, X Q Chen et al. Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching. ACS Nano, 11, 693-701(2017).

    [191] M R M Hashemi, S H Yang, T Y Wang, N Sepúlveda, M Jarrahi. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep, 6, 35439(2016).

    [192] D C Wang, L C Zhang, Y D Gong, L K Jian, T Venkatesan et al. Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces. IEEE Photonics J, 8, 5500308(2016).

    [193] M Seo, J Kyoung, H Park, S Koo, H S Kim et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett, 10, 2064-2068(2010).

    [194] T Driscoll, S Palit, M M Qazilbash, M Brehm, F Keilmann et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl Phys Lett, 93, 024101(2008).

    [195] Z H Zhu, P G Evans, R F Jr Haglund, J G Valentine. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett, 17, 4881-4885(2017).

    [196] P J Collings, M Hird. Introduction to Liquid Crystals: Chemistry and Physics(1997).

    [197] A Minovich, D N Neshev, D A Powell, I V Shadrivov, Y S Kivshar. Tunable fishnet metamaterials infiltrated by liquid crystals. Appl Phys Lett, 96, 193103(2010).

    [198] O Buchnev, J Y Ou, M Kaczmarek, N I Zheludev, V A Fedotov. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Opt Express, 21, 1633-1638(2013).

    [199] F L Zhang, Q Zhao, W H Zhang, J B Sun, J Zhou et al. Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal. Appl Phys Lett, 97, 134103(2010).

    [200] G Isić, B Vasić, D C Zografopoulos, R Beccherelli, R Gajić. Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals. Phys Rev Appl, 3, 064007(2015).

    [201] M V Gorkunov, M A Osipov. Tunability of wire-grid metamaterial immersed into nematic liquid crystal. J Appl Phys, 103, 036101(2008).

    [202] Z Liu, C Y Huang, H W Liu, X H Zhang, C Lee. Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces. Opt Express, 21, 6519-6525(2013).

    [203] O Buchnev, N Podoliak, M Kaczmarek, N I Zheludev, V A Fedotov. Electrically controlled nanostructured metasurface loaded with liquid crystal: Toward multifunctional photonic switch. Adv Opt Mater, 3, 674-679(2015).

    [204] O Buchnev, J Wallauer, M Walther, M Kaczmarek, N I Zheludev et al. Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Appl Phys Lett, 103, 141904(2013).

    [205] D C Zografopoulos, R Beccherelli. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching. Sci Rep, 5, 13137(2015).

    [206] R Kowerdziej, M Olifierczuk, J Parka, J Wróbel. Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal. Appl Phys Lett, 105, 022908(2014).

    [207] C L Chang, W C Wang, H R Lin, F J Hsieh, Y B Pun et al. Tunable terahertz fishnet metamaterial. Appl Phys Lett, 102, 151903(2013).

    [208] D H Kwon, X D Wang, Z Bayraktar, B Weiner, D H Werner. Near-infrared metamaterial films with reconfigurable transmissive/reflective properties. Opt Lett, 33, 545-547(2008).

    [209] A Komar, Z Fang, J Bohn, J Sautter, M Decker et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl Phys Lett, 110, 071109(2017).

    [210] R Kowerdziej, L Jaroszewicz, M Olifierczuk, J Parka. Experimental study on terahertz metamaterial embedded in nematic liquid crystal. Appl Phys Lett, 106, 092905(2015).

    [211] C C Chen, W F Chiang, M C Tsai, S A Jiang, T H Chang et al. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells. Opt Lett, 40, 2021-2024(2015).

    [212] R Kowerdziej, M Olifierczuk, B Salski, J Parka. Tunable negative index metamaterial employing in-plane switching mode at terahertz frequencies. Liq Cryst, 39, 827-831(2012).

    [213] S Bildik, S Dieter, C Fritzsch, W Menzel, R Jakoby. Reconfigurable folded reflectarray antenna based upon liquid crystal technology. IEEE Trans Antennas Propag, 63, 122-132(2015).

    [214] Y J Liu, G Y Si, E S P Leong, B Wang, A J Danner et al. Optically tunable plasmonic color filters. Appl Phys A, 107, 49-54(2012).

    [215] W Lewandowski, M Fruhnert, J Mieczkowski, C Rockstuhl, E Górecka. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat Commun, 6, 6590(2015).

    [216] L M Liu, I V Shadrivov, D A Powell, M R Raihan, H T Hattori et al. Temperature control of terahertz metamaterials with liquid crystals. IEEE Trans Terahertz Sci Technol, 3, 827-831(2013).

    [217] J C Zhao, Y Z Cheng, Z Z Cheng. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves. IEEE Photonics J, 10, 4600210(2018).

    [218] Z C Xu, R M Gao, C F Ding, L Wu, Y T Zhang et al. Photoexited switchable metamaterial absorber at terahertz frequencies. Opt Commun, 344, 125-128(2015).

    [219] X W Liu, H J Liu, Q B Sun, N Huang. Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon. Appl Opt, 54, 3478-3483(2015).

    [220] X G Zhao, K B Fan, J D Zhang, H R Seren, G D Metcalfe et al. Optically tunable metamaterial perfect absorber on highly flexible substrate. Sens Actuators A-Phys, 231, 74-80(2015).

    [221] M R Shcherbakov, S Liu, V V Zubyuk, A Vaskin, P P Vabishchevich et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun, 8, 17(2017).

    [222] M Manjappa, Y K Srivastava, L Q Cong, I Al-Naib, R Singh. Active photoswitching of sharp fano resonances in THz metadevices. Adv Mater, 29, 1603355(2017).

    [223] H R Seren, G R Keiser, L Y Cao, J D Zhang, A C Strikwerda et al. Optically Modulated multiband terahertz perfect absorber. Adv Opt Mater, 2, 1221-1226(2014).

    [224] G Kenanakis, R Zhao, N Katsarakis, M Kafesaki, C M Soukoulis et al. Optically controllable THz chiral metamaterials. Opt Express, 22, 12149-12159(2014).

    [225] Y Z Cheng, R Z Gong, Z Z Cheng. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt Commun, 361, 41-46(2016).

    [226] Q Li, Z Tian, X Q Zhang, R Singh, L L Du et al. Active graphene-silicon hybrid diode for terahertz waves. Nat Commun, 6, 7082(2015).

    [227] J Q Gu, R Singh, X J Liu, X Q Zhang, Y F Ma et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun, 3, 1151(2012).

    [228] X Q Su, C M Ouyang, N N Xu, S Y Tan, J Q Gu et al. Broadband terahertz transparency in a switchable metasurface. IEEE Photonics J, 7, 5900108(2015).

    [229] L Zhong, B Zhang, T He, L F Lv, Y B Hou et al. Conjugated polymer based active electric-controlled terahertz device. Appl Phys Lett, 108, 103301(2016).

    [230] I M Pryce, Y A Kelaita, K Aydin, H A Atwater. Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano, 5, 8167-8174(2011).

    [231] S C Malek, H S Ee, R Agarwal. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett, 17, 3641-3645(2017).

    [232] I M Pryce, K Aydin, Y A Kelaita, R M Briggs, H A Atwater. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett, 10, 4222-4227(2010).

    [233] J N Li, C M Shah, W Withayachumnankul, B S Y Ung, A Mitchell et al. Mechanically tunable terahertz metamaterials. Appl Phys Lett, 102, 121101(2013).

    [234] Y B Cui, J H Zhou, V A Tamma, W Park. Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. ACS Nano, 6, 2385-2393(2012).

    [235] P Gutruf, C J Zou, W Withayachumnankul, M Bhaskaran, S Sriram et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS nano, 10, 133-141(2016).

    [236] D Yoo, T W Johnson, S Cherukulappurath, D J Norris, S H Oh. Template-stripped tunable plasmonic devices on stretchable and rollable substrates. ACS Nano, 9, 10647-10654(2015).

    [237] K Kim, D Lee, S Eom, S Lim. Stretchable metamaterial absorber using liquid metal-filled polydimethylsiloxane (PDMS). Sensors, 16, 521(2016).

    [238] M Dehghani, T Pakizeh. Efficient tunability and circuit model of nested-U nanoresonators in optical metasurfaces. J Mod Opt, 65, 151-157(2018).

    [239] C T C Nguyen, L P B Katehi, G M Rebeiz. Micromachined devices for wireless communications. Proc IEEE, 86, 1756-1768(1998).

    [240] G M Rebeiz, J B Muldavin. Rf mems switches and switch circuits. IEEE Microw Mag, 2, 59-71(2001).

    [241] E R Brown. RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans Microw Theory Tech, 46, 1868-1880(1998).

    [242] A Nemati, B A Ganji. UWB monopole antenna with switchable band-notch characteristic using a novel MEMS Afloat. Appl Comput Electrom Soc J, 30, 1306-1312(2015).

    [243] Jung C Won, M J Lee, G P Li, F De Flaviis. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Trans Antennas Propag, 54, 455-463(2006).

    [244] A C K Mak, C R Rowell, R D Murch, C L Mak. Reconfigurable multiband antenna designs for wireless communication devices. IEEE Trans Antennas Propag, 55, 1919-1928(2007).

    [245] S Nikolaou, N D Kingsley, G E Ponchak, J Papapolymerou, M M Tentzeris. UWB elliptical monopoles with a reconfigurable band notch using MEMS switches actuated without bias lines. IEEE Trans Antennas Propag, 57, 2242-2251(2009).

    [246] E Erdil, K Topalli, M Unlu, O A Civi, T Akin. Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Trans Antennas Propag, 55, 1193-1196(2007).

    [247] G M Rebeiz, G L Tan, J S Hayden. RF MEMS phase shifters: Design and applications. IEEE Microw Mag, 3, 72-81(2002).

    [248] P R Scheeper, B Nordstrand, J O Gullov, B Liu, T Clausen et al. A new measurement microphone based on MEMS technology. J Microelectromech Syst, 12, 880-891(2003).

    [249] J J Jr Neumann, K J Gabriel. CMOS-MEMS membrane for audio-frequency acoustic actuation. Sens Actuators A: Phys, 95, 175-182(2002).

    [250] J Bryzek, S Roundy, B Bircumshaw, C Chung, K Castellino et al. Marvelous MEMS. IEEE Circuits Devices, 22, 8-28(2006).

    [251] M D Williams, B A Griffin, T N Reagan, J R Underbrink, M Sheplak. An AlN MEMS piezoelectric microphone for aeroacoustic applications. J Microelectromech Syst, 21, 270-283(2012).

    [252] AhmadnejadJGanjiB ANematiADesign, analysis, and modelling of a MEMS capacitive microphone for integration into CMOS circuits. In Proceedings of 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) 186-190 (IEEE, 2013)Proceedings of 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) 186-190 (IEEE, 2013); http://doi.org/10.1109/PrimeAsia.2013.6731202. http://doi.org/10.1109/PrimeAsia.2013.6731202

    [253] J Ahmadnejad, B A Ganji, A Nemati. A mems capacitive microphone modelling for integrated circuits. Int J Eng-Trans C: Aspects, 28, 888-895(2015).

    [254] E Ekmekci, K Topalli, T Akin, G Turhan-Sayan. A tunable multi-band metamaterial design using micro-split SRR structures. Opt Express, 17, 16046-16058(2009).

    [255] T Debogovic, J Perruisseau-Carrier. Low loss MEMS-reconfigurable 1-bit reflectarray cell with dual-linear polarization. IEEE Trans Antennas Propag, 62, 5055-5060(2014).

    [256] M Zhang, W Zhang, A Q Liu, F C Li, C F Lan. Tunable polarization conversion and rotation based on a reconfigurable metasurface. Sci Rep, 7, 12068(2017).

    [257] O Buchnev, N Podoliak, T Frank, M Kaczmarek, L D Jiang et al. Controlling stiction in nano-electro-mechanical systems using liquid crystals. ACS Nano, 10, 11519-11524(2016).

    [258] A Isozaki, T Kan, H Takahashi, K Matsumoto, I Shimoyama. Out-of-plane actuation with a sub-micron initial gap for reconfigurable terahertz micro-electro-mechanical systems metamaterials. Opt Express, 23, 26243-26251(2015).

    [259] T Stark, M Imboden, S Kaya, A Mertiri, J Chang et al. MEMS tunable mid-infrared plasmonic spectrometer. ACS Photonics, 3, 14-19(2016).

    [260] K Chen, G Razinskas, T Feichtner, S Grossmann, S Christiansen et al. Electromechanically tunable suspended optical nanoantenna. Nano Lett, 16, 2680-2685(2016).

    [261] A Kundu, S Das, S Maity, B Gupta, S K Lahiri et al. A tunable band-stop filter using a metamaterial structure and MEMS bridges on a silicon substrate. J Micromech Microeng, 22, 045004(2012).

    [262] F S Ma, Y Qian, Y S Lin, H W Liu, X H Zhang et al. Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split-ring resonator arrays. Appl Phys Lett, 102, 161912(2013).

    [263] L Q Cong, P Pitchappa, C Lee, R Singh. Active phase transition via loss engineering in a terahertz MEMS metamaterial. Adv Mater, 29, 1700733(2017).

    [264] C Kadlec, V Skoromets, F Kadlec, H Němec, H T Chen et al. Electric-field tuning of a planar terahertz metamaterial based on strained SrTiO3 layers. J Phys D: Appl Phys, 51, 054001(2018).

    [265] W R Xu, S Sonkusale. Microwave diode switchable metamaterial reflector/absorber. Appl Phys Lett, 103, 031902(2013).

    [266] B Zhu, Y J Feng, J M Zhao, C Huang, Z B Wang et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Opt Express 18, 18, 23196s(2319).

    [267] S N Burokur, J P Daniel, P Ratajczak, A De Lustrac. Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl Phys Lett, 97, 064101(2010).

    [268] X L Ma, W B Pan, C Huang, M B Pu, Y Q Wang et al. An active metamaterial for polarization manipulating. Adv Opt Mater, 2, 945-949(2014).

    [269] H X Xu, S L Sun, S W Tang, S J Ma, Q He et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci Rep, 6, 27503(2016).

    [270] H H Yang, X Y Cao, F Yang, J Gao, S H Xu et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci Rep, 6, 35692(2016).

    [271] Y C Fan, T Qiao, F L Zhang, Q H Fu, J J Dong et al. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci Rep, 7, 40441(2017).

    [272] S C Tian, H X Liu, L Li. Design of 1-bit digital reconfigurable reflective metasurface for beam-scanning. Appl Sci, 7, 882(2017).

    [273] D F Sievenpiper, J H Schaffner, H J Song, R Y Loo, G Tangonan. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans Antennas Propag, 51, 2713-2722(2003).

    [274] J Zhao, Q Cheng, J Chen, M Q Qi, W X Jiang et al. A tunable metamaterial absorber using varactor diodes. New J Phys, 15, 043049(2013).

    [275] T S Kasirga, Y N Ertas, M Bayindir. Microfluidics for reconfigurable electromagnetic metamaterials. Appl Phys Lett, 95, 214102(2009).

    [276] H K Kim, D Lee, S Lim. A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications. Sensors, 16, 1246(2016).

    [277] J Q Wang, S C Liu, S Guruswamy, A Nahata. Reconfigurable terahertz metamaterial device with pressure memory. Opt Express, 22, 4065-4074(2014).

    [278] Z X Geng, X Zhang, Z Y Fan, X Q Lv, H D Chen. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci Rep, 7, 16378(2017).

    [279] W M Zhu, Q H Song, L B Yan, W Zhang, P C Wu et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv Mater, 27, 4739-4743(2015).

    [280] A Baldi, M Gonzalez-Silveira, V Palmisano, B Dam, R Griessen. Destabilization of the Mg-H system through elastic constraints. Phys Rev Lett, 102, 226102(2009).

    [281] F Sterl, N Strohfeldt, R Walter, R Griessen, A Tittl et al. Magnesium as novel material for active plasmonics in the visible wavelength range. Nano Lett, 15, 7949-7955(2015).

    [282] X Y Duan, S Kamin, N Liu. Dynamic plasmonic colour display. Nat Commun, 8, 14606(2017).

    [283] X Y Duan, S Kamin, F Sterl, H Giessen, N Liu. Hydrogen-regulated chiral nanoplasmonics. Nano Lett, 16, 1462-1466(2016).

    [284] K Bi, J Zhou, H J Zhao, X M Liu, C W Lan. Tunable dual-band negative refractive index in ferrite-based metamaterials. Opt Express, 21, 10746-10752(2013).

    [285] K Bi, Y S Guo, X M Liu, Q Zhao, J H Xiao et al. Magnetically tunable Mie resonance-based dielectric metamaterials. Sci Rep, 4, 7001(2014).

    [286] M Lei, N Y Feng, Q M Wang, Y N Hao, S G Huang et al. Magnetically tunable metamaterial perfect absorber. J Appl Phys, 119, 244504(2016).

    [287] Q M Wang, L Y Zeng, M Lei, K Bi. Tunable metamaterial bandstop filter based on ferromagnetic resonance. AIP Adv, 5, 077145(2015).

    [288] B Du, Z Xu, J Wang, S Xia. Magnetically tunable ferrite-dielectric left-handed metamaterial. Prog Electromag Res, 66, 21-28(2016).

    [289] K Bi, K Huang, L Y Zeng, M H Zhou, Q M Wang et al. Tunable dielectric properties of ferrite-dielectric based metamaterial. PLoS One, 10, e0127331(2015).

    Arash Nemati, Qian Wang, Minghui Hong, Jinghua Teng. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009-1
    Download Citation