• Opto-Electronic Advances
  • Vol. 1, Issue 5, 180009-1 (2018)
Arash Nemati1、2, Qian Wang1, Minghui Hong2, and Jinghua Teng1、*
Author Affiliations
  • 1Institute of Materials Research & Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singa-pore 138634, Singapore
  • 2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
  • show less
    DOI: 10.29026/oea.2018.180009 Cite this Article
    Arash Nemati, Qian Wang, Minghui Hong, Jinghua Teng. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009-1 Copy Citation Text show less

    Abstract

    Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applied to the current devices throughout the electromagnetic spectrum from microwave to optics but also inspiring many new thrilling applications such as programmable on-demand optics and photonics in future. In order to overcome the limits imposed by passive metasurfaces, extensive researches have been put on utilizing different materials and mechanisms to design active metasurfaces. In this paper, we review the recent progress in tunable and reconfigurable metasurfaces and metadevices through the different active materials deployed together with the different control mechanisms including electrical, thermal, optical, mechanical, and magnetic, and provide the perspective for their future development for applications.
    $ {\tilde \varepsilon _{\rm{r}}}(\omega ) = {\varepsilon '_{\rm{r}}}(\omega ) + {\rm{i}}{\varepsilon ''_{\rm{r}}}(\omega ) = {\varepsilon _\infty } - \frac{{\omega _{\rm{p}}^2}}{{{\omega ^2} + {\rm{i}}\omega {\mathit{\Gamma}} }}, $ (1)

    View in Article

    $ {\mathit{\Gamma}} = \frac{1}{\tau } = \frac{e}{{\mu {m^{\rm{*}}}}}, $ (2)

    View in Article

    $ \omega _{\rm{p}}^2 = \frac{{N{e^2}}}{{{\varepsilon _0}{m^{\rm{*}}}}}, $ (3)

    View in Article

    $ {\varepsilon '_{\rm{r}}}(\omega ) = {\varepsilon _\infty } - \frac{{\omega _{\rm{p}}^2}}{{{\omega ^2} + {{\mathit{\Gamma}} ^2}}}, $ (4)

    View in Article

    $ {\varepsilon ''_{\rm{r}}}(\omega ) = \frac{{{\mathit{\Gamma}} \omega _{\rm{p}}^2}}{{\omega ({\omega ^2} + {{\mathit{\Gamma}} ^2})}}. $ (5)

    View in Article

    $ \rho = \frac{1}{\sigma } = \frac{{{m^{\rm{*}}}}}{{N{e^2}\tau }}. $ (6)

    View in Article

    $ {\tilde n^2} = {(n + {\rm{i}}\kappa )^2} = {\tilde \varepsilon _{\rm{r}}}{\tilde \mu _{\rm{r}}}, $ (7)

    View in Article

    $ n(\omega ) = \sqrt {\frac{{\sqrt {{{\varepsilon '}_{\rm{r}}}^2 + {{\varepsilon ''}_r}^{\;2}} + {{\varepsilon '}_{\rm{r}}}}}{2}} , $ (8)

    View in Article

    $ \kappa (\omega ) = \sqrt {\frac{{\sqrt {{{\varepsilon '}_{\rm{r}}}^2 + {{\varepsilon ''}_{\rm{r}}}^{\;2}} - {{\varepsilon '}_{\rm{r}}}}}{2}} . $ (9)

    View in Article

    $ {\lambda _{{\rm{ENZ}}}} = \frac{{2{\rm{ \mathsf{ π} }}c}}{{{\omega _{{\rm{ENZ}}}}}} = \frac{{2{\rm{ \mathsf{ π} }}c}}{{\sqrt {\frac{{\omega _{\rm{p}}^2}}{{{\varepsilon _\infty }}} - {{\mathit{\Gamma}} ^2}} }}, $ (10)

    View in Article

    $ n = {n_0} + {n_2}I = {n_0} + \frac{{3Re_\chi ^{(3)}}}{{4c{\varepsilon _0}n_0^2}}{I_0}, $ (11)

    View in Article

    $ \eta = \frac{{\varepsilon (0)}}{{\varepsilon ({E_0})}}. $ (12)

    View in Article

    $ {\eta _{\rm{r}}} = \frac{{\varepsilon (0) - \varepsilon ({E_0})}}{{\varepsilon (0)}}. $ (13)

    View in Article

    $ K = \frac{{{\eta _{\rm{r}}}}}{{\tan \delta }}. $ (14)

    View in Article

    Arash Nemati, Qian Wang, Minghui Hong, Jinghua Teng. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009-1
    Download Citation