• Photonics Research
  • Vol. 10, Issue 1, 148 (2022)
Chao Mei1、2, Ihar Babushkin3, Tamas Nagy1, and Günter Steinmeyer1、4、*
Author Affiliations
  • 1Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
  • 2School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing 100083, China
  • 3Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
  • 4Institut für Physik, Humboldt Universität zu Berlin, 12489 Berlin, Germany
  • show less
    DOI: 10.1364/PRJ.438610 Cite this Article Set citation alerts
    Chao Mei, Ihar Babushkin, Tamas Nagy, Günter Steinmeyer. Spatial cage solitons—taming light bullets[J]. Photonics Research, 2022, 10(1): 148 Copy Citation Text show less

    Abstract

    Multimode nonlinear optics is used to overcome a long-standing limitation of fiber optics, tightly phase locking several spatial modes and enabling the coherent transport of a wave packet through a multimode fiber. A similar problem is encountered in the temporal compression of multimillijoule pulses to few-cycle duration in hollow gas-filled fibers. Scaling the fiber length to up to 6 m, hollow fibers have recently reached 1 TW of peak power. Despite the remarkable utility of the hollow fiber compressor and its widespread application, however, no analytical model exists to enable insight into the scaling behavior of maximum compressibility and peak power. Here we extend a recently introduced formalism for describing mode locking to the analog scenario of locking spatial fiber modes together. Our formalism unveils the coexistence of two soliton branches for anomalous modal dispersion and indicates the formation of stable spatiotemporal light bullets that would be unstable in free space, similar to the temporal cage solitons in mode-locking theory. Our model enables deeper understanding of the physical processes behind the formation of such light bullets and predicts the existence of multimode solitons in a much wider range of fiber types than previously considered possible.
    En(r)J0(unra),

    View in Article

    κn=βn+iαn=k0un22k0a2(1iϵ+1k0aϵ1),

    View in Article

    βn=k0cos(unk0a)β1π2(n1)22k0a2=β1+B(n1)2.

    View in Article

    β2+k2=k02sin2θ+k02cos2θ=k02,

    View in Article

    k,n=k0sin(unk0a)(n14)πa.

    View in Article

    zE=iβrrrrE+iΓ|E|2E.

    View in Article

    zE˜n=iβnE˜n+iΓj+k=nE˜jE˜kE˜*.

    View in Article

    zE˜1=iβ1E˜1+iΓ[η1234E˜2E˜3E˜4*+η123E˜22E˜3*+(|E˜1|2+η12|E˜2|2+η13|E˜3|2+η14|E˜4|2)E˜1],zE˜2=iβ2E˜2+iΓ[η1234E˜1E˜3*E˜4+η123E˜1E˜2*E˜3+η234E˜32E˜4*+(η12|E˜1|2+|E˜2|2+η23|E˜3|2+η24|E˜4|2)E˜2],zE˜3=iβ3E˜3+iΓ[η1234E˜1E˜2*E˜4+η123E˜1*E˜22+η234E˜2E˜3*E˜4+(η13|E˜1|2+η23|E˜2|2+|E˜3|2+η34|E˜4|2)E˜3],zE˜4=iβ4E˜4+iΓ[η1234E˜1*E˜2E˜3+η234E˜2*E˜32(η14|E˜1|2+η24|E˜2|2+η34|E˜3|2+|E˜4|2)E˜4].

    View in Article

    ηnjk=0aE˜nE˜jE˜kE˜rdrm={n,j,k,}0aE˜m4rdr4.

    View in Article

    ψ=γ(1+η1234a2a3a4+η123a22a3+η12a22+η13a32+η14a42)=γ[η1234a3a4+η123a2a3+η234a32a4+(η12+a22+η23a32+η24a42)a2]+a2=γ[η1234a2a4+η123a22+η234a2a3a4+(η13+η23a22+a32+η34a42)a3]+4a3=γ[η1234a2a3+η234a2a32+(η14+η24a22+η34a32+a42)a4]+9a4.

    View in Article

    Aeff=12π(|E(r)|2rdr)2|E(r)|4rdr1.50a2,

    View in Article

    P10.2Pcrψa2k0λ2.

    View in Article

    χ(z)=ΔνrmsΔν0=1+433φnl2(z),

    View in Article

    M(a,λ)=max[χ(z)exp(2αtotz)]|z,

    View in Article

    Chao Mei, Ihar Babushkin, Tamas Nagy, Günter Steinmeyer. Spatial cage solitons—taming light bullets[J]. Photonics Research, 2022, 10(1): 148
    Download Citation