
- Photonics Research
- Vol. 10, Issue 1, 148 (2022)
Abstract
1. Introduction
Spatial solitons have fascinated researchers since the early days of nonlinear optics [1,2]. In combination with self-phase modulation, the self-focusing effect offers the possibility for three-dimensional contraction of an optical wave packet and a concomitant intensity increase. While there exist numerous reports on such light bullets [3–5], this intriguing nonlinear mechanism found little application, probably because of the limiting action of a spatial modulation instability [6,7]. Starting from small imperfection in the beam profile, this process induces a rapid small-scale breakup of the beam profile into filaments when the critical power
2. The Marcatili-Schmeltzer model
The linear optical properties of a cylindrical hollow dielectric waveguide with radius
3. Expansion to nonlinear waveguides
Figure 1.(a) Mode fields of the first four
4. Soliton solutions
Assuming propagation of the
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
The resulting peak power versus effective nonlinearity is depicted in Fig. 2(a). In the anomalous regime (hollow fibers), the higher-order modes
Figure 2.Spatial soliton solution branches of Eq. (
Figure 3.Three-dimensional visualization of the light bullet structure at the stability limit (
To this end, it appears illustrative to compute the relevant interaction lengths [41] inside a hollow fiber. Given the rather low group-velocity dispersion of noble gases like argon, which may be additionally cancelled out by the waveguide (group-velocity) dispersion of the hollow fiber, dispersion lengths
5. Hollow-fiber compressor design rules
Utilizing the spatial soliton solutions of Eq. (8), one can now derive a few design rules for hollow fiber compressors. As nonlinearly broadened spectra typically exhibit near-perfect spectral symmetry, one can employ the simple relation [41] derived for unchirped Gaussian input pulses,
Figure 4.Comparison of model results with measured data. (a) Total losses (linear and nonlinear) versus ratio of
6. Conclusions
In conclusion, the field of multimode nonlinear optics bears a number of appealing applications, which are mostly ruled by an
Acknowledgment
Acknowledgment. G. S. gratefully acknowledges fruitful discussions with Pavel Sidorenko and Frank Wise (Cornell University), Boris Malomed (Tel Aviv University), as well as with Howard Milchberg (UMD).
References
[1] R. Y. Chiao, E. Garmire, C. H. Townes. Self-trapping of optical beams. Phys. Rev. Lett., 14, 1056(1965).
[2] V. E. Zakharov, A. B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP, 34, 62-69(1972).
[3] Y. Silberberg. Collapse of optical pulses. Opt. Lett., 15, 1282-1284(1990).
[4] K. D. Moll, A. L. Gaeta, G. Fibich. Self-similar optical wave collapse: observation of the Townes profile. Phys. Rev. Lett., 90, 203902(2003).
[5] D. Majus, G. Tamošauskas, I. Gražulevičiūtė, N. Garejev, A. Lotti, A. Couairon, D. Faccio, A. Dubietis. Nature of spatiotemporal light bullets in bulk Kerr media. Phys. Rev. Lett., 112, 193901(2014).
[6] V. I. Bespalov, V. I. Talanov. Filamentary structure of light beams in nonlinear liquids. JETP Lett., 3, 307-310(1966).
[7] E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass. Propagation of a high-intensity laser pulsewith small-scale intensity modulation. Appl. Phys. Lett., 25, 448-450(1974).
[8] J. Marburger. Self-focusing: theory. Prog. Quantum Electron., 4, 35-110(1975).
[9] R. W. Boyd. Nonlinear Optics(2020).
[10] E. Marcatili, R. Schmeltzer. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J., 43, 1783-1809(1964).
[11] M. Nisoli, S. De Silvestri, O. Svelto. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett., 68, 2793-2795(1996).
[12] M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferenz, C. Spielmann, S. Sartania, F. Krausz. Compression of high-energy laser pulses below 5 fs. Opt. Lett., 22, 522-524(1997).
[13] C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, H. C. Kapteyn. Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett., 83, 2187-2190(1999).
[14] S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, G. Steinmeyer. Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations. Phys. Rev. E, 74, 056604(2006).
[15] G. Jargot, N. Daher, L. Lavenu, X. Delen, M. H. N. Forget, P. Georges. Self-compression in a multipass cell. Opt. Lett., 43, 5643-5646(2018).
[16] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli. Isolated single-cycle attosecond pulses. Science, 314, 443-446(2006).
[17] X. Ma, J. Dostál, T. Brixner. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression. Opt. Express, 24, 20781-20791(2016).
[18] T. Nagy, M. Forster, P. Simon. Flexible hollow fiber for pulse compressors. Appl. Opt., 47, 3264-3268(2008).
[19] T. Nagy, V. Pervak, P. Simon. Optimal pulse compression in long hollow fibers. Opt. Lett., 36, 4422-4424(2011).
[20] T. Nagy, S. Hädrich, P. Simon, A. Blumenstein, N. Walther, R. Klas, J. Buldt, H. Stark, S. Breitkopf, P. Jójárt, I. Seres, Z. Várallyay, T. Eidam, J. Limpert. Generation of three-cycle multi-millijoule laser pulses at 318 W average power. Optica, 6, 1423-1424(2019).
[21] T. Nagy, M. Kretschmar, M. J. J. Vrakking, A. Rouzée. Generation of above-terawatt 1.5-cycle visible pulses at 1 kHz by post-compression in a hollow fiber. Opt. Lett., 45, 3313-3316(2020).
[22] G. Tempea, T. Brabec. Theory of self-focusing in hollow waveguide. Opt. Lett., 23, 762-764(1998).
[23] G. Fibich, A. Gaeta. Critical power for self-focusing in bulk media and hollow waveguides. Opt. Lett., 25, 335-337(2000).
[24] M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, K. Nagasaka. Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure. J. Opt. Soc. Am. B, 20, 2002-2011(2003).
[25] J. Andreasen, M. Kolesik. Midinfrared femtosecond laser pulse filamentation in hollow waveguides: a comparison of simulation methods. Phys. Rev. E, 87, 053303(2013).
[26] R. Safaei, G. Fan, O. Kwon, K. Légaré, P. Lassonde, B. E. Schmidt, H. Ibrahim, F. Légaré. High-energy multidimensional solitary states in hollow-core fibres. Nat. Photonics, 14, 733-739(2020).
[27] A. Crego, E. C. Jarque, J. S. Roman. Influence of the spatial confinement on the self-focusing of ultrashort pulses in hollow-core fibers. Sci. Rep., 9, 9546(2019).
[28] B. A. López-Zubieta, E. C. Jarque, Í. J. Sola, J. S. Roman. Spatiotemporal-dressed optical solitons in hollow-core capillaries. OSA Contin., 1, 930-938(2018).
[29] H. A. Haus. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron., 6, 1173-1185(2000).
[30] E. Escoto, A. Demircan, G. Steinmeyer. Cage solitons. IEEE J. Quantum Electron., 57, 1300106(2021).
[31] F. W. Wise. Generation of light bullets. Physics, 3, 107(2010).
[32] W. H. Renninger, F. W. Wise. Optical solitons in graded-index multimode fibres. Nat. Commun., 4, 1719(2013).
[33] G. Lopez-Galmiche, Z. S. Eznaveh, M. A. Eftekhar, J. A. Lopez, L. G. Wright, F. Wise, D. Christodoulides, R. A. Correa. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm. Opt. Lett., 41, 2553-2556(2016).
[34] L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, F. W. Wise. Mechanisms of spatiotemporal mode-locking. Nat. Phys., 16, 565-570(2020).
[35] K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, V. Couderc. Spatial beam self-cleaning in multimode fibres. Nat. Photonics, 11, 237-241(2017).
[36] K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, S. Wabnitz. Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photon., 4, 110901(2019).
[37] F. Goos, H. Hänchen. Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Phys., 436, 333-346(1947).
[38] J. P. Crenn. Optical study of the EH11 mode in a hollow circular oversized waveguide and Gaussian approximation of the far-field pattern. Appl. Opt., 23, 3428-3433(1984).
[39] J. P. Crenn. Optical propagation of the HE11 mode and Gaussian beams in hollow circular waveguides. Int. J. Infrared Millim. Waves, 14, 1947-1973(1993).
[40] A. W. Snyder, J. D. Love. Optical Waveguide Theory(1983).
[41] G. P. Agrawal. Nonlinear Fiber Optics(2019).
[42] F. Poletti, P. Horak. Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B, 25, 1645-1654(2008).
[43] R. N. Bracewell. The Fourier Transform and Its Applications(2000).
[44] V. L. Vinetski, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin. Dynamic self-diffraction of coherent light beams. Sov. Phys. Usp., 22, 742-756(1979).
[45] K. W. DeLong, R. Trebino, D. Kane. Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries. J. Opt. Soc. Am. B, 11, 1595-1608(1995).
[46] R. T. Chapman, T. J. Butcher, P. Horak, F. Poletti, J. G. Frey, W. S. Brocklesby. Modal effects on pump-pulse propagation in an Ar-filled capillary. Opt. Express, 18, 13279-13284(2010).
[47] K. J. Blow, N. J. Doran, S. J. D. Phoenix. The soliton phase. Opt. Commun., 88, 137-140(1992).
[48] A. Rundquist, C. G. Durfee, Z. H. Chang, C. Herne, S. Backus, M. M. Murnane, H. C. Kapteyn. Phase-matched generation of coherent soft X-rays. Science, 280, 1412-1415(1998).

Set citation alerts for the article
Please enter your email address