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Multimode nonlinear optics is used to overcome a long-standing limitation of fiber optics, tightly phase locking
several spatial modes and enabling the coherent transport of a wave packet through a multimode fiber. A similar
problem is encountered in the temporal compression of multimillijoule pulses to few-cycle duration in hollow
gas-filled fibers. Scaling the fiber length to up to 6 m, hollow fibers have recently reached 1 TW of peak power.
Despite the remarkable utility of the hollow fiber compressor and its widespread application, however, no ana-
lytical model exists to enable insight into the scaling behavior of maximum compressibility and peak power. Here
we extend a recently introduced formalism for describing mode locking to the analog scenario of locking spatial
fiber modes together. Our formalism unveils the coexistence of two soliton branches for anomalous modal
dispersion and indicates the formation of stable spatiotemporal light bullets that would be unstable in free space,
similar to the temporal cage solitons in mode-locking theory. Our model enables deeper understanding of the
physical processes behind the formation of such light bullets and predicts the existence of multimode solitons in a
much wider range of fiber types than previously considered possible. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.438610

1. INTRODUCTION

Spatial solitons have fascinated researchers since the early days
of nonlinear optics [1,2]. In combination with self-phase
modulation, the self-focusing effect offers the possibility for
three-dimensional contraction of an optical wave packet and
a concomitant intensity increase. While there exist numerous
reports on such light bullets [3–5], this intriguing nonlinear
mechanism found little application, probably because of the
limiting action of a spatial modulation instability [6,7].
Starting from small imperfection in the beam profile, this pro-
cess induces a rapid small-scale breakup of the beam profile into
filaments when the critical power Pcrit is exceeded [8,9], thus
limiting the obtainable nonlinear interaction length. Given this
severe constraint, high-power pulse compression and nonlinear
conversion techniques have resorted to hollow capillaries for
extended nonlinear interaction length [10–13]. While several
other competing techniques [14,15] have been discussed for
the compression of pulses with gigawatt peak powers, the
hollow fiber is currently the most established compression tech-
nique and has found widespread application in attosecond
pulse generation and other high-field experiments; see,
e.g., Refs. [16,17]. Utilizing the advanced stretched-fiber tech-
nique [18,19] recently enabled record-breaking continuous
powers above 300 W [20] and peak powers exceeding

1 TW for the first time [21]. Despite the widespread utility
of this technique, however, there exist only relatively few ana-
lytical approaches [22,23] for modeling the nonlinear broaden-
ing processes inside the hollow fiber. Numerical simulations
often resorted to a simplified one-dimensional approximation,
as full modal expansions [24–26] are numerically cumbersome.
In the following, we present a completely analytical approach
for determining spatial soliton solutions in nonlinear multi-
mode fiber geometries. Similar spatiotemporal solitons have
previously been observed in numerical simulations [27,28].
Moreover, our approach is mathematically similar to the cage
soliton solutions of the Haus master equation of mode locking
[29,30], and it is also applicable for the thriving field of multi-
mode fiber nonlinear optics [31–36]. Assuming adiabatic pulse
shaping, the results of this analysis enable the derivation of
universal scaling laws for the design of nonlinear multimode
waveguides.

2. THE MARCATILI-SCHMELTZER MODEL

The linear optical properties of a cylindrical hollow dielectric
waveguide with radius a were first modeled by Marcatili and
Schmeltzer [10]. Assuming linear polarization, one finds hybrid
solutions of the wave equation, which were originally desig-
nated as EHmn modes. In solid core multimode (SCM) fibers,
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widely similar solutions are referred to as LP�m−1�n modes.
Strictly speaking, both designations are not identical because
of the Goos–Hänchen effect [37], which causes the LP�m−1�n
modes to extend into the cladding. In contrast, the EHmn
modes exhibit a node of the electric field at the dielectric
interface. Assuming m � 1, i.e., azimuthal homogeneity, the
radial field profile of the EH1n mode is given by

En�r� ∝ J0

�
unr
a

�
, (1)

with the zero-order Bessel function J0 and its nth zero un
(n > 0); see Fig. 1(a). The complex-valued propagation con-
stant of these modes is given by

κn � βn � iαn � k0 −
u2n

2k0a2

�
1 − i

ϵ� 1

k0a
ffiffiffiffiffiffiffiffiffiffi
ϵ − 1

p
�
, (2)

where k0 � 2π∕λ is the wavenumber and
ffiffiffi
ϵ

p � nclad the
refractive index of the cladding material. Here βn denotes
the propagation constant of the nth mode. The propagation
constant varies with the eigenmode, which causes intermodal
dispersion and is attributed to diffractive effects. αn describes
mode-dependent losses in a hollow-fiber geometry. Exploiting
the trigonometric relationship between the propagation con-
stant and the wavenumber displayed in Figs. 1(b) and 1(c),
one finds an approximate parabolic dependence [38,39] of
the propagation constant,

βn � k0 cos

�
un
k0a

�
≈ β1 −

π2�n − 1�2
2k0a2

� β1 � B�n − 1�2:

(3)

Here β1 is the propagation constant of the fundamental mode,
and B describes intermodal dispersion due to diffraction. A
negative value of B is formally equivalent to anomalous
group-velocity dispersion in the formation of time-domain sol-
itons. The quality of the approximation is depicted in Fig. 1(d),
clearly indicating the close analogy between diffraction and
dispersion for the formation of spatial and temporal solitons,
respectively. In order to show that small deviations from a per-
fect parabolic dependence in Eq. (3) play no major role, we
used the exact relationship in computing all of the following
example cases. The identical parabolic approximation can be
made for SCM fibers [40], yet with positive curvature B.
Exploiting the general relation,

β2 � k2⊥ � k20 sin
2θ� k20 cos

2θ � k20, (4)

depicted in Fig. 1(c) and reinserting discretized values βn and
θn � un∕k0a, one also finds an approximate linear relationship
for the transverse wavenumber,

k⊥,n � k0 sin

�
un
k0a

�
≈
�
n −

1

4

�
π

a
: (5)

3. EXPANSION TO NONLINEAR WAVEGUIDES

In the following, we describe the evolution of the spatial beam
profile E�z, r� upon propagation along the coordinate z with
the transverse wave equation,

∂zE � iβ
r
∂r r∂rE � iΓjE j2E: (6)

The first term on the right-hand side describes linear diffractive
effects, where β � k0 � 2π∕λ is typically assumed for a plane
wave propagating in vacuum. In contrast, as βn < k0 in a hol-
low waveguide, the modes En propagate at superluminal phase
velocity inside, which can be explained by −π phase jumps due
to Fresnel reflection at the interface in the geometrical optical
picture of Refs. [38,39]. The second term on the right-hand
side of Eq. (6) is not included in the linear optical description
of Marcatili and Schmeltzer [10] and describes self-focusing ef-
fects scaling with Γ � k0n2, where the nonlinear refractive in-
dex is given by n2. These self-focusing effects are the source of
mode mixing, i.e., energy flow between the eigenmodes (mostly
towards higher-order modes) and lead to the shrinkage of the

Fig. 1. (a) Mode fields of the first four EH1n modes considered in
this study. Intensities are depicted by colors, and electric fields are rep-
resented by arrows. (b) Ray-optical representation of hollow-fiber
transmission. The wave vector k0 can be decomposed into a transverse
component k⊥ and a longitudinal component β, which are connected
by Pythagoras’ theorem [38]. (c) The propagation constants βn of the
individual EH1n modes follow an approximate n2 dependence,
whereas the k⊥,n underly a linear relationship with n. (d) Intramode
dispersion, deviation of the propagation constants of the first 10 EH1n
modes from the propagation constant of a plane wave, calculated at
800 nm wavelength for an HCF with a core radius of 100 μm; sym-
bols, exact solution according to Eq. (3); curve, parabolic fit; the four
modes of interest within this study are highlighted in red, indicating a
dephasing of ≈8 rad∕cm in the linear optical regime.
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beam analogously to free-space propagation. Equation (6) is
widely similar to the nonlinear Schrödinger equation
(NLSE), yet with the temporal coordinate t replaced by the
radial coordinate r. While it is customary to numerically solve
the NLSE by a split-step Fourier method [41], the equation can
be reformulated in the spatial frequency domain [30], which is
also known as k⊥ space and leads to a system of nonlinearly
coupled ordinary differential equations. Consequently, rewrit-
ing Eq. (6) in the k⊥ domain leads to a similar system of
coupled equations [27,42],

∂z Ẽ n � iβnẼn � iΓ
X

j�k−l�n

Ẽ jẼ kẼ�
l: (7)

Here the product jE j2E is now replaced by a double-correlation
sum, which is essentially exploiting the Wiener–Khinchin au-
tocorrelation theorem [43]. The correlation sum can also be
understood as conservation of the transverse wavenumber k⊥
in Fig. 1(b), leading to the constraint n � j� k − l. The par-
tially degenerate case j � k is also known as self-diffraction
[44]. As was noted by DeLong et al. [45], the self-diffraction
process is not exactly phase-matched. This slight mismatch is
accounted for by the intermodal dispersion term βnẼn, which
takes the part of group-delay dispersion with its quadratic
dependence in the frequency representation of the Haus master
equation [30]. As the parabolic dependence on mode number n
is convex for hollow fibers, one can associate this case with
anomalous dispersion, whereas SCM fibers display normal mo-
dal dispersion. Moreover, the slight phase mismatch can be
understood with the neglect of the linear term in Eq. (3)
and is otherwise similar to higher-order dispersion contribu-
tions in traditional mode-locking theory [29], i.e., these con-
tributions give rise to deviations from equidistance of the cold
cavity modes. Solving the mode-locking version of Eq. (7)
requires restrictive assumptions on the number of coupled
longitudinal modes [30]. In the transverse case, it is often
considered sufficient to include only a few spatial modes
(e.g., N � 3 [26]) for treating nonlinear propagation through
a hollow waveguide. We therefore write out Eq. (7) for four
modes, which effectively converts the problem of finding an
eigensolution of a set of ordinary differential equations into
the problem of finding a root of a system of nonlinearly coupled
algebraic equations. In the following, we use excessive content
in Ẽ4 as an indicator for the breakdown of our simplifying
assumptions,

∂z Ẽ1 � iβ1Ẽ1 � iΓ�η1234Ẽ2Ẽ3Ẽ�
4 � η123Ẽ2

2Ẽ
�
3

� �jẼ1j2 � η12jẼ2j2 � η13jẼ3j2 � η14jẼ4j2�Ẽ1�,
∂z Ẽ2 � iβ2Ẽ2 � iΓ�η1234Ẽ1Ẽ�

3 Ẽ4 � η123Ẽ1Ẽ�
2 Ẽ3 � η234Ẽ2

3Ẽ
�
4

� �η12jẼ1j2 � jẼ2j2 � η23jẼ3j2 � η24jẼ4j2�Ẽ2�,
∂z Ẽ3 � iβ3Ẽ3 � iΓ�η1234Ẽ1Ẽ�

2 Ẽ4 � η123Ẽ�
1 Ẽ

2
2 � η234Ẽ2Ẽ�

3 Ẽ4

� �η13jẼ1j2 � η23jẼ2j2 � jẼ3j2 � η34jẼ4j2�Ẽ3�,
∂z Ẽ4 � iβ4Ẽ4 � iΓ�η1234Ẽ�

1 Ẽ2Ẽ3 � η234Ẽ�
2 Ẽ

2
3�η14jẼ1j2

� η24jẼ2j2 � η34jẼ3j2 � jẼ4j2�Ẽ4�: (8)

Here the βn terms describe intermodal dispersion, i.e., the
phase velocity differences between the individual modes.

Self-diffraction is accounted for by partially degenerate four-
wave mixing (FWM) terms ∝ηklẼ2

kE
�
l. Self-focusing of the

individual modes is described by the fully degenerate terms
∝jEkj2Ek. In addition, cross-phase modulation (XPM) terms
appear; cf. Table 1. In Eq. (8), we introduced modal overlap
factors ηnj, ηnjk, and ηnjkl for noncollinear FWM processes as
they have been previously discussed in Refs. [42,46]. For the
fully nondegenerate process, we define

ηnjkl �
R
a
0 ẼnẼ jẼ kẼlrdrQ

m�fn, j, k,lg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
a
0 Ẽ

4
mrdr

4

q : (9)

For degenerate mixing processes, we use a shorthand notation,
e.g., η1221 � η2112 � η12∕2 and include the degeneracy factor
in the respective overlap factors. Values for the various η are
listed in Table 1. Provided that the nonlinear length LNL is
much shorter than the dispersive length LD [41], Eq. (8)
can be used as a highly efficient tool for simulating the propa-
gation via solving a set of coupled ordinary differential equa-
tions. As will be further discussed below, such adiabaticity
can be assumed in typical hollow-fiber compression scenarios.
Moreover, propagation losses can be accounted for by a
complex-valued redefinition of the βn.

4. SOLITON SOLUTIONS

Assuming propagation of the Ẽ j at identical phase velocity,
i.e., as a solitonic wave packet, we find a wavenumber offset
ψ relative to the fundamental mode β1. We further renormalize
real-valued electric field amplitudes an � jẼ n∕Ẽ1j to yield
a1 � 1 and redefine an effective nonlinearity γ � ΓB−1jẼ1j−2.
Using these simplifications, we can extract an algebraic dis-
criminant for the resulting spatial soliton,

ψ � γ�1� η1234a2a3a4 � η123a22a3 � η12a22 � η13a23 � η14a24�
� γ�η1234a3a4 � η123a2a3 � η234a23a4

� �η12 � a22 � η23a23 � η24a24�a2� � a2

� γ�η1234a2a4 � η123a22 � η234a2a3a4

� �η13 � η23a22 � a23 � η34a24�a3� � 4a3

� γ�η1234a2a3 � η234a2a23
� �η14 � η24a22 � η34a23 � a24�a4� � 9a4: (10)

One can now retrieve all real-valued roots of Eq. (10) and com-
pute beam diameter weff , loss αeff , and, most importantly, the
resulting “soliton phase” ψ [47], which is more correctly de-
fined as the total propagation constant involving both linear
and nonlinear effects relative to the phase velocity frame. ψ van-
ishes for γ → 0, as we already accounted for linear propagation
effects by subtracting the propagation constant β1 in Eq. (10).

Table 1. Nonlinear Mode-Coupling Factorsa

XPM η12 � 1.709 η13 � 1.529 η14 � 1.408
XPM η23 � 1.847 η24 � 1.725 η34 � 1.897
FWM η123 � 0.788 η234 � 0.874 η1234 � 1.462

aNondegenerate FWM, ηnjkl; degenerate FWM, ηnjk � ηnnjk ; XPM,
ηnj � ηnjjn.
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This effective subtraction of the linear propagation phase
now gives immediate access to the nonlinear phase via
∂φnl∕∂z � ψ . Using the relation φnl � k0zn2PA−1

eff with the
nonlinear refractive index n2 and the effective area [41] of
the fundamental EH11 mode,

Aeff �
1

2π

�R jE�r�j2rdr
�
2

R jE�r�j4rdr ≈ 1.50a2, (11)

one can then relate the soliton phase to the power P in the
nonlinear waveguide. Inserting the definition of the critical
power for self-focusing Pcr � 0.147λ2∕n2 [8,9,23], we then
finally yield

P ≈ 10.2Pcr

ψa2

k0λ2
: (12)

The resulting peak power versus effective nonlinearity is de-
picted in Fig. 2(a). In the anomalous regime (hollow fibers), the
higher-order modes EH1n, n > 1 of the spatial soliton solutions
carry the opposite sign of the fundamental EH11 mode. This
can be understood by a partial cancellation of nonlinearity and
modal dispersion, similar to the formation of Schrödinger
solitons [2]. In turn, a depression of the peak intensity and

an increased effective area Aeff of the beam profile result
[Fig. 2(b)]. Consequently, the hollow waveguide can host
beams with a peak power of ≈1.4Pcr, yet at a characteristic do-
nut profile; cf. Fig. 3. In the normal dispersion regime (SCM
fibers), peak intensities are enhanced as nonlinearity and modal
dispersion add up, leading to cusp-like beam profiles for κ > 0.
Comparing both waveguide dispersion regimes, it is striking
that the asymmetry in the P�γ� relation is only caused by beam
profile variations. For the SCM case, this effect leads to a maxi-
mum peak power hosting of 0.5Pcr. Apart from these two fun-
damental soliton branches, our investigation identifies a second
solution branch in the anomalous dispersion regime (red curves
in Fig. 2). In this branch, the limit-value donut solution con-
verges toward a “Mexican hat” solution upon subsequent re-
duction of power. Because of this positive feedback on the
losses, the increasing amount of energy in the lossy higher-order
modes leads to a runaway, i.e., this solution branch is unstable.
This situation can therefore be understood as a blowup of the
beam profile in k⊥ space, i.e., the energy is quickly transferred
into increasingly lossy higher-order modes. In contrast, the fun-
damental soliton branches (blue and green in Fig. 2) self-sta-
bilize upon propagation as their higher-order contents reduce
with decreasing peak power, i.e., there is a negative feedback
mechanism.

To this end, it appears illustrative to compute the relevant
interaction lengths [41] inside a hollow fiber. Given the rather
low group-velocity dispersion of noble gases like argon, which
may be additionally cancelled out by the waveguide (group-
velocity) dispersion of the hollow fiber, dispersion lengths
LD ≈ τ2∕jβ2j for pulse durations τ0 > 20 fs generally exceed
the fiber length by a large factor for experimental conditions
for typical hollow-fiber compressors in Refs. [19–21]. The ab-
sorption length is commonly also chosen longer than the actual
fiber length. This is contrasted by the nonlinear length
LNL � Γ−1P−1, which amounts to only a few millimeters for
powers P > 0.1Pcr at identical experimental conditions. One
can therefore conclude that spatial soliton effects strongly
dominate the nonlinear dynamics inside the hollow fiber,
causing an adiabatic reshaping of the solitons as a reaction
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Fig. 2. Spatial soliton solution branches of Eq. (8). For normal mo-
dal dispersion (ncore > nclad), a single solution branch exists (green). In
hollow fibers, two branches coexist (blue and red). The red branch is
considered unstable (see discussion in text). (a) Radially integrated in-
tensity

R
E�r�2rdr � P of the spatial cage soliton solutions versus ef-

fective nonlinearity. Powers have been normalized to the critical power
of self-focusing Pcr in free space [9]. Insets show E�r� for parameters
indicated by symbols. (b) Root mean square mode diameter of spatial
solitons normalized to the HE11 mode; insets show spatial intensity
profiles jE�r�j2.

a

z

Fig. 3. Three-dimensional visualization of the light bullet structure
at the stability limit (≈1.4Pcr) in the anomalous modal dispersion re-
gime. Equi-intensity surfaces are shown with colors red (80% peak
intensity) to blue (10% peak intensity). In the center, a donut struc-
ture dominates, which evolves into an ellipsoidal shape in the temporal
wings. The glass–gas interface of the hollow fiber is depicted in light
gray for comparison.
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to the comparatively slow waveguide losses. This adiabatic sce-
nario is contrasted by the use of hollow fibers for high-
harmonic generation [48], where much shorter hollow fibers
of smaller diameter are typically employed. Apart from the sig-
nificantly increased modal dispersion, the already compressed
input duration also requires consideration of shock terms [42],
which we have left out in our analysis. In case of adiabatic re-
shaping, however, nonsolitonic contents are stripped off into
linearly propagating higher-order modes, which travel at re-
duced group velocities. For example, for a � 200 μm and
λ � 1 μm, the linear group velocity difference of the EH12 rel-
ative to the fundamental mode amounts to about 100 fs/m,
i.e., the nonsolitonic contents will lead to the formation of a
temporal continuum background after recompression.
Ignoring reshaping effects due to group-velocity dispersion,
one can now compute the structure of the emerging spatiotem-
poral light bullets; see Fig. 3. Here we have chosen the highest
possible peak power in Fig. 2, i.e., P � 1.4Pcr, which leads to
the formation of a donut spatial structure at the pulse center. At
lower intensities, this structure goes over into the more
common ellipsoidal shape of conventional light bullets. It needs
to be emphasized that temporal broadening effects will accel-
erate the decrease of peak power. Yet, this effect of group-veloc-
ity dispersion can be easily compensated for by chirped mirrors.
Uncompensated modal dispersion effects, however, cannot be
fixed after nonlinear propagation in the fiber anymore. The
severity of uncompensated intermodal dispersion becomes
clear from reinspecting Fig. 1(d). An intermodal dispersion of
8 rad/cm between fundamental and EH14 modes results in a
group delay of 140 fs in a 1 m long linear fiber, which needs to
be compared with the typical sub-5 fs pulse duration of the
compressed pulses observed after dispersion compensation.

5. HOLLOW-FIBER COMPRESSOR DESIGN
RULES

Utilizing the spatial soliton solutions of Eq. (8), one can now
derive a few design rules for hollow fiber compressors. As non-
linearly broadened spectra typically exhibit near-perfect spectral
symmetry, one can employ the simple relation [41]
derived for unchirped Gaussian input pulses,

χ�z� � Δνrms

Δν0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

3
ffiffiffi
3

p φ2
nl�z�

s
, (13)

to estimate the compressibility of the input pulse. Here Δν0
and Δνrms are the input and output root mean square width
of the pulse, respectively. In view of applications, increase of
peak power is typically considered more important than ulti-
mate shortness of the pulse. Let us therefore define the figure
of merit,

M �a, λ� � max�χ�z� exp�−2αtotz��jz , (14)
as the criterion for the maximum beneficial propagation length
zmax inside the hollow fiber. This limit is reached when
detrimental losses start to outweigh the higher compressibility
that would result from additional spectral broadening.
Consequently, neglecting any possible loss in the subsequent
compression process (e.g., by chirped mirrors), peak powers
will not further increase upon additional propagation.

Pertinent computations are shown in Fig. 4, indicating the
dependence of the total (linear and nonlinear) loss αtot as a
function of a3∕λ2; see Fig. 4(a). Compared with experimental
data [blue symbols in Fig. 4(a)], it appears striking that early
work with relatively short fibers [19] reported losses that deviate
from predictions of our model, whereas more recent reports
with longer fibers [20,21] appear to completely agree with
our model. Moreover, we also compare the maximum beneficial
length and the observed spectral broadening between theory
and previous experimental findings in Fig. 4(b). Here it is
not overly surprising that our projections are too optimistic,
with maximum compressibilities and beneficial fiber lengths
that are about two-thirds of our predictions. Nevertheless,
the relations derived from our spatial soliton model clearly
explain the trends observed in previous experiments,
confirming that long hollow fibers promise superior perfor-
mance compared to the single-meter-long segments of early
experimentation.

6. CONCLUSIONS

In conclusion, the field of multimode nonlinear optics bears a
number of appealing applications, which are mostly ruled by an
a3∕λ2 relationship. In particular, in hollow fibers, where group-
velocity dispersion plays an inferior role, spatial soliton
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losses (linear and nonlinear) versus ratio of a3 and λ2 (curve and red
dots). Early measurements with relatively short hollow fibers exhibited
significantly higher losses, whereas more recent measurements showed
excellent agreement as indicated by the respective references [19–21].
(b) Maximum beneficial length (solid curve and hollow triangles) and
maximum compressibility (dashed line and solid triangles); cf.
Eq. (13). This analysis confirms that superior compression can be
reached with longer hollow fibers and larger core diameters.
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formation appears to take a previously unrecognized lead role at
large diameters and lengths. Given that dispersive and absorp-
tive lengths are orders of magnitude larger than the soliton
length, adiabatic reshaping dominates the nonlinear dynamics
of pulse propagation through the hollow fiber. As the critical
power Pcr plays a decisive limiting role for the performance of a
nonlinear multimode waveguide, further upscaling of com-
pressible peak powers requires usage of lower pressures or gases
with lower refractive index than the commonly used argon. As
the currently demonstrated highest peak powers already used
fibers with several-meter lengths, hosting even higher powers
requires the use of significantly longer fibers of tens or even
hundreds of meters’ length to accumulate sufficient nonlinear
phase for the broadening process. Such dimensions appear to be
out of range for universities but could certainly be implemented
in large-scale facilities, in particular linear accelerators. Using
SCM fibers near their zero-dispersion wavelength instead, spec-
tral broadening can be accomplished at much higher pulse en-
ergies than in single-mode fibers. In contrast to previous
demonstrations of nonlinear multimode optics, our theoretical
investigations suggest that the exact refractive index profile
plays only a minor rule, enabling the use of simple step-index
architectures rather than relying only on parabolic profiles.
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