• Photonics Research
  • Vol. 7, Issue 2, 149 (2019)
Yu Yu1, Yating Zhang1、*, Lufan Jin1, Zhiliang Chen1, Yifan Li1, Qingyan Li1, Mingxuan Cao1, Yongli Che1, Haitao Dai2, Junbo Yang3, and Jianquan Yao1
Author Affiliations
  • 1Key Laboratory of Opto-Electronic Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
  • 3Center of Material Science, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.1364/PRJ.7.000149 Cite this Article Set citation alerts
    Yu Yu, Yating Zhang, Lufan Jin, Zhiliang Chen, Yifan Li, Qingyan Li, Mingxuan Cao, Yongli Che, Haitao Dai, Junbo Yang, Jianquan Yao. Self-powered lead-free quantum dot plasmonic phototransistor with multi-wavelength response[J]. Photonics Research, 2019, 7(2): 149 Copy Citation Text show less
    References

    [1] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, A. Radenovic. Single-layer MoS2 nanopores as nanopower generators. Nature, 536, 197-200(2016).

    [2] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang. Self-powered nanowire devices. Nat. Nanotechnol., 5, 366-373(2010).

    [3] F. Zhang, Y. Zang, D. Huang, C. A. Di, D. Zhu. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun., 6, 8356(2015).

    [4] Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, Z. L. Wang. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun., 6, 8401(2015).

    [5] S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, J. H. He. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater., 30, 1704611(2018).

    [6] C. R. Kagan, E. Lifshitz, E. H. Sargent, D. V. Talapin. Building devices from colloidal quantum dots. Science, 353, aac5523(2016).

    [7] X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, E. H. Sargent. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater., 28, 299-304(2016).

    [8] Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, E. H. Sargent. Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Lett., 17, 2349-2353(2017).

    [9] A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, E. H. Sargent. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol., 7, 577-582(2012).

    [10] F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, E. H. Sargent. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature, 544, 75-79(2017).

    [11] Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, E. H. Sargent. Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission. ACS Photon., 4, 830-836(2017).

    [12] T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, O. Hayden. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics, 3, 332-336(2009).

    [13] D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, X. F. Guo. Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv. Mater., 24, 2715-2720(2012).

    [14] E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, B. Dubertret. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett., 16, 1282-1286(2016).

    [15] S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater., 4, 138-142(2005).

    [16] G. Konstantatos, E. H. Sargent. Nanostructured materials for photon detection. Nat. Nanotechnol., 5, 391-400(2010).

    [17] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics. J. Am. Chem. Soc., 130, 16770-16777(2008).

    [18] V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, B. A. Korgel. Spray-deposited CuInSe2 nanocrystal photovoltaics. Energy Environ. Sci., 3, 1600-1606(2010).

    [19] V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid, B. A. Korgel. Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices. Opt. Express, 18, A411-A420(2010).

    [20] C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, B. A. Korgel. Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals. ACS Appl. Mater. Interface, 4, 2757-2761(2012).

    [21] M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, B. A. Korgel. CuInSe2 quantum dot solar cells with high open-circuit voltage. J. Phys. Chem. Lett., 4, 2030-2034(2013).

    [22] H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, Y. S. Nam. Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging. RSC Adv., 5, 43449-43455(2015).

    [23] W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, J. Chang. Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging. ACS Appl. Mater. Interface, 7, 18759-18768(2015).

    [24] V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, K. W. Hunter. Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization. Colloids Surf. A, 464, 134-142(2015).

    [25] H. Liu, C. Gu, W. Xiong, M. Zhang. A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics. Sens. Actuators B Chem., 209, 670-676(2015).

    [26] C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, J. Chang. pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging. ACS Appl. Mater. Interface, 7, 7566-7575(2015).

    [27] K. H. Lee, J. H. Kim, H. S. Jang, Y. R. Do, H. Yang. Quantum-dot-based white lighting planar source through downconversion by blue electroluminescence. Opt. Lett., 39, 1208-1211(2014).

    [28] X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, H. Li. Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes. ACS Appl. Mater. Interface, 7, 8659-8666(2015).

    [29] W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, C. Ruan. ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect. J. Nanomater., 16, 298614(2015).

    [30] T.-L. Li, C.-D. Cai, T.-F. Yeh, H. Teng. Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination. J. Alloys Compd., 550, 326-330(2013).

    [31] F. E. Osterloh. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev., 42, 2294-2320(2013).

    [32] F. Liu, J. Zhu, Y. Xu, L. Zhou, S. Dai. Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots. Nanoscale, 8, 10021-10025(2016).

    [33] C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, K. M. Ryan. Compound copper chalcogenide nanocrystals. Chem. Rev., 117, 5865-6109(2017).

    [34] P. Berini. Surface plasmon photodetectors and their applications. Laser Photon. Rev., 8, 197-220(2014).

    [35] A. Pescaglini, D. Iacopino. Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing. J. Mater. Chem. C, 3, 11785-11800(2015).

    [36] J.-A. Huang, L.-B. Luo. Low-dimensional plasmonic photodetectors: recent progress and future opportunities. Adv. Opt. Mater., 6, 1701282(2018).

    [37] C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, S. Y. Lin. A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett., 10, 1704-1709(2010).

    [38] S. Butun, N. A. Cinel, E. Ozbay. LSPR enhanced MSM UV photodetectors. Nanotechnology, 23, 444010(2012).

    [39] L. B. Luo, W. J. Xie, Y. F. Zou, Y. Q. Yu, F. X. Liang, Z. J. Huang, K. Y. Zhou. Surface plasmon propelled high-performance CdSe nanoribbons photodetector. Opt. Express, 23, 12979-12988(2015).

    [40] Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, H. Zeng. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 12, 5622-5632(2016).

    [41] R. Guo, T. Shen, J. Tian. Broadband hybrid organic/CuInSe2 quantum dot photodetectors. J. Mater. Chem. C, 6, 2573-2579(2018).

    [42] Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, J. Yao. Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction. J. Phys. Chem. Lett., 8, 445-451(2017).

    [43] F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, W. Hu. High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Adv. Funct. Mater., 26, 6084-6090(2016).

    [44] J. Huang, Y. Yuan, Y. Shao, Y. Yan. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater., 2, 17042(2017).

    [45] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, T. Wu. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun., 6, 8238(2015).

    [46] H. Fang, W. Hu. Photogating in low dimensional photodetectors. Adv. Sci., 4, 1700323(2017).

    [47] D. Kufer, G. Konstantatos. Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials. ACS Photon., 3, 2197-2210(2016).

    [48] J. H. Li, L. Y. Niu, Z. J. Zheng, F. Yan. Photosensitive graphene transistors. Adv. Mater., 26, 5239-5273(2014).

    [49] Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, J. Yao. PbS-decorated WS2 phototransistors with fast response. ACS Photon., 4, 950-956(2017).

    [50] Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, J. Yao. High performances for solution-processed 0D–0D heterojunction phototransistors. Adv. Opt. Mater., 5, 1700565(2017).

    Yu Yu, Yating Zhang, Lufan Jin, Zhiliang Chen, Yifan Li, Qingyan Li, Mingxuan Cao, Yongli Che, Haitao Dai, Junbo Yang, Jianquan Yao. Self-powered lead-free quantum dot plasmonic phototransistor with multi-wavelength response[J]. Photonics Research, 2019, 7(2): 149
    Download Citation