• Photonics Research
  • Vol. 10, Issue 5, 1157 (2022)
J. H. Kang*, H. Wenzel, E. Freier, V. Hoffmann, J. Fricke, O. Brox, M. Matalla, and S. Einfeldt
Author Affiliations
  • Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
  • show less
    DOI: 10.1364/PRJ.444947 Cite this Article Set citation alerts
    J. H. Kang, H. Wenzel, E. Freier, V. Hoffmann, J. Fricke, O. Brox, M. Matalla, S. Einfeldt. Continuous-wave operation of 405 nm distributed Bragg reflector laser diodes based on GaN using 10th-order surface gratings[J]. Photonics Research, 2022, 10(5): 1157 Copy Citation Text show less
    References

    [1] S. Nakamura, S. Pearton, G. Fasol. The Blue laser Diode: The Complete Story, 7(2000).

    [2] Y. Shimada, Y. Chida, N. Ohtsubo, T. Aoki, M. Takeuchi, T. Kuga, Y. Torii. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr. Rev. Sci. Instrum., 84, 063101(2013).

    [3] O. Kock, W. He, D. Swierad, L. Smith, J. Hughes, K. Bongs, Y. Singh. Laser controlled atom source for optical clocks. Sci. Rep., 6, 37321(2016).

    [4] S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, A. E. Kelly. Visible light communications using a directly modulated 422 nm GaN laser diode. Opt. Lett., 38, 3792-3794(2013).

    [5] C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bower, S. P. DenBaars. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Opt. Express, 23, 16232-16237(2015).

    [6] V. Tronciu, N. Werner, H. Wenzel, H.-J. Wünsche. Feedback sensitivity of detuned DBR semiconductor lasers. IEEE J. Quantum Electron., 57, 2100107(2021).

    [7] H. Y. Ryu, K. H. Ha, J. K. Son, S. N. Lee, H. S. Paek, T. Jang, Y. J. Sung, K. S. Kim, H. K. Kim, Y. Park, O. H. Nam. Determination of internal parameters in blue InGaN laser diodes by the measurement of cavity-length dependent characteristics. Appl. Phy. Lett., 93, 011105(2008).

    [8] H. Zhang, C.-W. Shih, D. Martin, A. Caut, J.-F. Carlin, R. Butté, N. Grandjean. Short cavity InGaN-based laser diodes with cavity length below 300 μm. Semicond. Sci. Technol., 34, 085005(2019).

    [9] J. Cho, S. Cho, B. J. Kim, S. Chae, C. Sone, O. H. Nam, J. W. Lee, Y. Park, T. I. Kim. InGaN/GaN multi-quantum well distributed Bragg reflector laser diode. Appl. Phy. Lett., 76, 1489-1491(2000).

    [10] V. Dumitru, H. Schweizer, H. Gräbeldinger, R. Härle, S. Bader, G. Brürderl, A. Weimar, A. Lell, V. Härle. InGaN/GaN multi-quantum well distributed Bragg reflector laser diode with second-order gratings. Electron. Lett., 39, 372-373(2003).

    [11] W. Xie, J. Li, M. Liao, Z. Deng, W. Wang, S. Sun. Narrow linewidth distributed Bragg reflectors based on InGaN/GaN laser. Micromachines, 10, 529(2019).

    [12] J. H. Kang, M. Martens, H. Wenzel, V. Hoffmann, W. John, S. Einfeldt, T. Wernicke, M. Kneissl. Optically pumped DFB lasers based on GaN using 10th-order laterally coupled surface gratings. IEEE Photon. Technol. Lett., 29, 138-141(2017).

    [13] J. H. Kang, H. Wenzel, V. Hoffmann, E. Freier, L. Sulmoni, R.-S. Unger, S. Einfeldt, T. Wernicke, M. Kneissl. 10th order laterally coupled GaN-based DFB laser diodes with V-shaped surface gratings. Proc. SPIE, 10553, 105530A(2018).

    [14] J. H. Kang, H. Wenzel, V. Hoffmann, E. Freier, L. Sulmoni, R.-S. Unger, S. Einfeldt, T. Wernicke, M. Kneissl. DFB laser diodes based on GaN using 10th order laterally coupled surface gratings. IEEE Photon. Technol. Lett., 30, 231-234(2018).

    [15] J. H. Kang, H. Wenzel, E. Freier, V. Hoffmann, O. Brox, J. Fircke, L. Sulmoni, M. Matalla, C. Stölmacker, M. Kneissl, M. Weyers, S. Einfeldt. Continuous-wave operation of DFB laser diodes based on GaN using 10th-order laterally coupled surface gratings. Opt. Lett., 45, 935-938(2020).

    [16] H. Wenzel, R. Guther, A. M. Shams-Zadeh-Amiri, P. Bienstman. A comparative study of higher order Bragg gratings: coupled-mode theory versus mode expansion modeling. IEEE J. Quantum Electron., 42, 64-70(2006).

    [17] J. Fricke, H. Wenzel, M. Matalla, A. Klehr, G. Erbert. 980-nm DBR lasers using higher order gratings defined by i-line lithography. Semicond. Sci. Technol., 20, 1149-1152(2005).

    [18] M. Radziunas, K.-H. Hasler, B. Sumpf, T. Y. Tien, H. Wenzel. Mode transitions in distributed Bragg reflector semiconductor lasers: experiments, simulations and analysis. J. Phys. B, 44, 105401(2011).

    [19] J. S. Major, D. F. Welch. Singlemode InGaAs/GaAs distributed Bragg reflector laser diodes operating at 1083 nm. Electron. Lett., 29, 2121-2122(1993).

    [20] V.-M. Korpijärvi, J. Viheriälä, M. Koskinen, A. T. Aho, M. Guina. High-power temperature-stable GaInNAs distributed Bragg reflector laser emitting at 1180 nm. Opt. Lett., 41, 657-660(2016).

    J. H. Kang, H. Wenzel, E. Freier, V. Hoffmann, J. Fricke, O. Brox, M. Matalla, S. Einfeldt. Continuous-wave operation of 405 nm distributed Bragg reflector laser diodes based on GaN using 10th-order surface gratings[J]. Photonics Research, 2022, 10(5): 1157
    Download Citation