• Opto-Electronic Advances
  • Vol. 3, Issue 10, 200003-1 (2020)
Silu Zhang, Liwei Liu*, Sheng Ren, Zilin Li, Yihua Zhao, Zhigang Yang, Rui Hu, and Junle Qu
Author Affiliations
  • Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
  • show less
    DOI: 10.29026/oea.2020.200003 Cite this Article
    Silu Zhang, Liwei Liu, Sheng Ren, Zilin Li, Yihua Zhao, Zhigang Yang, Rui Hu, Junle Qu. Recent advances in nonlinear optics for bio-imaging applications[J]. Opto-Electronic Advances, 2020, 3(10): 200003-1 Copy Citation Text show less
    References

    [1] Y R Shen. The Principles of Nonlinear Optics(1984).

    [2] R W Boyd. Nonlinear Optics(2007).

    [3] G P Agrawal. Applications of Nonlinear Fiber Optics(2001).

    [4] B E A Saleh, M C Teich. Fundamentals of Photonics(2007).

    [5] E Garmire. Nonlinear optics in daily life. Opt Exp, 21, 30532-30544(2013).

    [6] L W Chen, Y Zhou, M X Wu, M H Hong. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto Electron Adv, 1, 170001(2018).

    [7] Z X Liu, M L Jiang, Y L Hu, F Lin, B Shen et al. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. Opto-Electron Adv, 1, 180007(2018).

    [8] P A Franken, A E Hill, C W Peters, G Weinreich. Generation of optical harmonics. Phys Rev Lett, 7, 118-119(1961).

    [9] T H Maiman. Optical and microwave-optical experiments in ruby. Phys Rev Lett, 4, 564-566(1960).

    [10] D N Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2005).

    [11] L E Myers, W R Bosenberg. Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators. IEEE J Quantum Electron, 33, 1663-1672(1997).

    [12] Q Chen, W P Risk. Periodic poling of KTiOPO4 using an applied electric field. Electron Lett, 30, 1516-1517(1994).

    [13] H Karlsson, F Laurell, P Henriksson, G Arvidsson. Frequency doubling in periodically poled RbTiOAsO4. Electron Lett, 32, 556-557(1996).

    [14] K Mizuuchi, K Yamamoto. Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3. Opt Lett, 21, 107-109(1996).

    [15] J P Meyn, M M Fejer. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate. Opt Lett, 22, 1214-1216(1997).

    [16] S D Setzler, P G Schunemann, T M Pollak, L A Pomeranz, M J Missey. Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series. Washington DC: Optical Society of America, 676(1999).

    [17] J P Meyn, M E Klein, D Woll, R Wallenstein, D Rytz. Periodically poled potassium niobate for second-harmonic generation at 463 nm. Opt Lett, 24, 1154-1156(1999).

    [18] J C Johnson, H Q Yan, R D Schaller, P B Petersen, P D Yang et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Lett, 2, 279-283(2002).

    [19] Y Nakayama, P J Pauzauskie, A Radenovic, R M Onorato, R J Saykally et al. Tunable nanowire nonlinear optical probe. Nature, 447, 1098-1101(2007).

    [20] J P Long, B S Simpkins, D J Rowenhorst, P E Pehrsson. Far-field imaging of optical second-harmonic generation in single GaN nanowires. Nano Lett, 7, 831-836(2007).

    [21] R Sanatinia, M Swillo, S Anand. Surface second-harmonic generation from vertical GaP nanopillars. Nano Lett, 12, 820-826(2012).

    [22] A Casadei, E F Pecora, J Trevino, C Forestiere, D Rüffer et al. Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas. Nano Lett, 14, 2271-2278(2014).

    [23] G Bautista, J Mäkitalo, Y Chen, V Dhaka, M Grasso et al. Second-harmonic generation imaging of semiconductor nanowires with focused vector beams. Nano Lett, 15, 1564-1569(2015).

    [24] X B Yin, Z L Ye, D A Chenet, Y Ye, K OoBrien et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science, 344, 488-490(2014).

    [25] X Zhou, J X Cheng, Y B Zhou, H Cao, H Hong et al. Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc, 137, 7994-7997(2015).

    [26] A Handelman, S Lavrov, A Kudryavtsev, A Khatchatouriants, Y Rosenberg et al. Nonlinear optical bioinspired peptide nanostructures. Adv Opt Mater, 1, 875-884(2013).

    [27] S Semin, A Van Etteger, L Cattaneo, N Amdursky, L Kulyuk et al. Strong thermo-induced single and two-photon green luminescence in self-organized peptide microtubes. Small, 11, 1156-1160(2015).

    [28] D Farrar, K L Ren, D Cheng, S Kim, W Moon et al. Permanent polarity and piezoelectricity of electrospun α-Helical Poly(α-Amino Acid) Fibers. Adv Mat, 23, 3954-3958(2011).

    [29] H H Zhang, Q Liao, X D Wang, Z Z Xu, H B Fu. Self-assembled organic hexagonal micro-prisms with high second harmonic generation efficiency for photonic devices. Nanoscale, 7, 10186-10192(2015).

    [30] H M Gibbs, G Khitrova, N Peyghambarian. Nonlinear Photonics(1990).

    [31] R Philip, M Ravikanth, Kumar G Ravindra. Studies of third order optical nonlinearity in iron (ó) phthalocyanine nj-oxo dimers using picosecond four-wave mixing. Opt Comm, 165, 91-97(1999).

    [32] G de la Torre, P Vázquez, , T Torres. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev, 104, 3723-3750(2004).

    [33] M O Senge, M Fazekas, E G A Notaras, W J Blau, M Zawadzka et al. Nonlinear optical properties of porphyrins. Adv Mat, 19, 2737-2774(2007).

    [34] Xu J, Boyd R W, Fischer G L. Nonlinear optical materials. Reference Module in Materials Science and Materials Engineering, Elsevier (2016).

    [35] K Wang, J Zhou, L Y Yuan, Y T Tao, J Chen et al. Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire. Nano Lett, 12, 833-838(2012).

    [36] L C Zhang, K Wang, Z Liu, G Yang, G Z Shen et al. Two-photon pumped lasing in a single CdS microwire. Appl Phys Lett, 102, 211915(2013).

    [37] C F Zhang, F Zhang, T Xia, N Kumar, J I Hahm et al. Low-threshold two-photon pumped ZnO nanowire lasers. Opt Express, 17, 7893-7900(2009).

    [38] E V Chelnokov, N Bityurin. Two-photon pumped random laser in nanocrystalline ZnO. Appl Phy Lett, 89, 171119(2006).

    [39] C Zhang, C L Zou, Y L Yan, R Hao, F W Sun et al. Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J Am Chem Soc, 133, 7276-7279(2011).

    [40] J C Yu, Y J Cui, H Xu, Y Yang, Z Y Wang et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat Comm, 4, 2719(2013).

    [41] F Helmchen, W Denk. Deep tissue two-photon microscopy. Nat Methods, 2, 932-940(2005).

    [42] K Schenke-Layland, I Riemann, O Damour, U A Stock, K König. Two-photon microscopes and in vivo multiphoton tomographs-Powerful diagnostic tools for tissue engineering and drug delivery. Adv Drug Deliv Rev, 58, 878-896(2006).

    [43] D R Miller, J W Jarrett, A M Hassan, A K Dunn. Deep tissue imaging with multiphoton fluorescence microscopy. Curr Opin Biomed Eng, 4, 32-39(2017).

    [44] W Denk, J H Strickler, W W Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [45] D W Piston, M S Kirby, H Cheng, W J Lederer, W W Webb. Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity. Appl Opt, 33, 662-669(1994).

    [46] G H Patterson, S M Knobel, P Arkhammar, O Thastrup, D W Piston. Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet ǂ cells. Proc Natl Acad Sci USA, 97, 5203-5207(2000).

    [47] B D Bennett, T L Jetton, G T Ying, M A Magnuson, D W Piston. Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem, 271, 3647-3651(1996).

    [48] S H Huang, A A Heikal, W W Webb. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J, 82, 2811-2825(2002).

    [49] Z Deyl, K Macek, M Adam, . Studies on the chemical nature of elastin fluorescence. Biochimi Biophys Acta, 625, 248-254(1980).

    [50] W R Zipfel, R M Williams, R Christie, A Y Nikitin, B T Hyman et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA, 100, 7075-7080(2003).

    [51] Q R Yu, A A Heikal. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J Photochem Photobiol B, 95, 46-57(2009).

    [52] K A Kasischke, E M Lambert, B Panepento, A Sun, H A Gelbard et al. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J Cereb Blood Flow Metab, 31, 68-81(2010).

    [53] M Balu, A Mazhar, C K Hayakawa, R Mittal, T B Krasieva et al. In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin. Biophys J, 104, 258-267(2013).

    [54] A A Mansour, J T Gonçalves, C W Bloyd, H Li, S Fernandes et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol, 36, 432-441(2018).

    [55] J Mei, Y H Huang, H Tian. Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl Mater Interfaces, 10, 12217-12261(2018).

    [56] M Collot, T K Fam, P Ashokkumar, O Faklaris, T Galli et al. Ultrabright and fluorogenic probes for multicolor imaging and tracking of lipid droplets in cells and tissues. J Am Chem Soc, 140, 5401-5411(2018).

    [57] X D Lou, Z J Zhao, B Z Tang. Organic dots based on AIEgens for two-photon fluorescence bioimaging. Small, 12, 6430-6450(2016).

    [58] D Ding, C C Goh, G X Feng, Z J Zhao, J Liu et al. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv Mat, 25, 6083-6088(2013).

    [59] R X Yi, P Das, F R Lin, B L Shen, Z G Yang et al. Fluorescence enhancement of small squaraine dye and its two-photon excited fluorescence in long-term near-infrared I & ò bioimaging. Opt Express, 27, 12360-12372(2019).

    [60] H F Wang, T B Huff, D A Zweifel, W He, P S Low et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods.. Proc Natl Acad Sci USA, 102, 15752-15756(2005).

    [61] T D Rane, A M Armani. Two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids. PLoS One, 11, e0167548(2016).

    [62] L Tong, C M Cobley, J Y Chen, Y N Xia, J X Cheng. Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angew Chem Int Ed, 49, 3485-3488(2010).

    [63] L Au, Q Zhang, C M Cobley, M Gidding, A G Schwartz et al. Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano, 4, 35-42(2010).

    [64] Y I Park, K T Lee, Y D Suh, T Hyeon. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev, 44, 1302-1317(2015).

    [65] S T Yang, L Cao, P G Luo, F S Lu, X Wang et al. Carbon dots for optical imaging in vivo. J Am Chem Soc, 131, 11308-11309(2009).

    [66] D Li, P T Jing, L H Sun, Y An, X Y Shan et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv Mat, 30, 1705913(2018).

    [67] C F Wu, D T Chiu. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed, 52, 3086-3109(2013).

    [68] Y T Gao, G X Feng, T Jiang, C Goh, L Ng et al. Biocompatible Nanoparticles based on diketo-pyrrolo-pyrrole (DPP) with aggregation-induced Red/NIR emission for in vivo two-photon fluorescence imaging. Adv Funct Mater, 25, 2857-2866(2015).

    [69] N G Horton, K Wang, D Kobat, C G Clark, F W Wise et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photon, 7, 205-209(2013).

    [70] D G Ouzounov, T Y Wang, M R Wang, D D Feng, N G Horton et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Methods, 14, 388-390(2017).

    [71] T Y Wang, D G Ouzounov, C Y Wu, N G Horton, B Zhang et al. Three-photon imaging of mouse brain structure and function through the intact skull. Nat Methods, 15, 789-792(2018).

    [72] C J Rowlands, D Park, O T Bruns, K D Piatkevich, D Fukumura et al. Wide-field three-photon excitation in biological samples. Light Sci Appl, 6, e16255(2017).

    [73] K Guesmi, L Abdeladim, S Tozer, P Mahou, T Kumamoto et al. Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light Sci Appl, 7, 12(2018).

    [74] P J Campagnola, L M Loew. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol, 21, 1356-1360(2003).

    [75] W Mohler, A C Millard, P J Campagnola. Second harmonic generation imaging of endogenous structural proteins. Methods, 29, 97-109(2003).

    [76] R Hellwarth, P Christensen. Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opt Comm, 12, 318-322(1974).

    [77] C Sheppard, J Gannaway, R Kompfner, D Walsh. The scanning harmonic optical microscope. IEEE J Quantum Electron, 13, 912(1977).

    [78] I Freund, M Deutsch, A Sprecher. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J, 50, 693-712(1986).

    [79] H Lodish, A Berk, C A Kaiser, M Krieger, A Bretscher et al. Molecular Cell Biology(2013).

    [80] J M Bueno, F J Ávila, P Artal. Second harmonic generation microscopy: a tool for quantitative analysis of tissues, Microscopy and Analysis, 19-27(2016).

    [81] P Campagnola. Second harmonic generation imaging microscopy: applications to diseases diagnostic. Anal Chem, 83, 3224-3231(2011).

    [82] I Gusachenko, V Tran, Y G Houssen, J M Allain, M C Schanne-Klein. Polarization-resolved second-harmonic generation in tendon upon mechanical stretching. Biophys J, 102, 2220-2229(2012).

    [83] X Y Chen, O Nadiarynkh, S Plotnikov, P J Campagnola. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc, 7, 654-669(2012).

    [84] W Lo, W L Chen, C M Hsueh, A A Ghazaryan, S J Chen et al. Fast Fourier transform-based analysis of second-harmonic generation Image in keratoconic cornea. Invest Ophthalmol Vis Sci, 53, 3501-3507(2012).

    [85] H Y Tan, Y L Chang, W Lo, C M Hsueh, W L Chen et al. Characterizing the morphologic changes in collagen crosslinked-treated corneas by Fourier transform-second harmonic generation imaging. J Cat Refract Surg, 39, 779-788(2013).

    [86] P P Provenzano, K W Eliceiri, J M Campbell, D R Inman, J G White et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med, 4, 38(2006).

    [87] M W Conklin, J C Eickhoff, K M Riching, C A Pehlke, K W Eliceiri et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol, 178, 1221-1232(2011).

    [88] E Sahai, J Wyckoff, U Philippar, J E Segall, F Gertler et al. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol, 5, 14(2005).

    [89] N D Kirkpatrick, M A Brewer, U Utzinger. Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiol Biomarkers Prev, 16, 2048-2057(2007).

    [90] O Nadiarnykh, R B LaComb, M A Brewer, P J Campagnola. Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy. BMC Cancer, 10, 94(2010).

    [91] S J Lin, S H Jee, C J Kuo, R J Wu, W C Lin et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett, 31, 2756-2758(2006).

    [92] R Cicchi, D Massi, S Sestini, P Carli, V De Giorgi et al. Multidimensional non-linear laser imaging of Basal Cell Carcinoma. Opt Express, 15, 10135-10148(2007).

    [93] E Dimitrow, M Ziemer, M J Koehler, J Norgauer, K König et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J Invest Dermatol, 129, 1752-1758(2009).

    [94] S Y Chen, S U Chen, H Y Wu, W J Lee, Y H Liao et al. In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy. IEEE J Sel Top Quant Electron, 16, 478-492(2010).

    [95] W X Sun, S Chang, D C S Tai, N Tan, G F Xiao et al. Nonlinear optical microscopy: use of second harmonic generation and two-photon microscopy for automated quantitative liver fibrosis studies. J Biomed Opt, 13, 064010(2008).

    [96] M Strupler, A M Pena, M Hernest, P L Tharaux, J L Martin et al. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express, 15, 4054-4065(2007).

    [97] R Lacomb, O Nadiarnykh, P J Campagnola. Quantitative Second Harmonic Generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation. Biophys J, 94, 4504-4514(2008).

    [98] K Schenke-Layland, J S Xie, E Angelis, B Starcher, K J Wu et al. Increased degradation of extracellular matrix structures of lacrimal glands implicated in the pathogenesis of Sjögren's syndrome. Matrix Biol, 27, 53-66(2008).

    [99] S J Lin, R E Wu, H Y Tan, W Lo, W C Lin et al. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt Lett, 30, 2275-2277(2005).

    [100] T T Le, I Langohr, M J Locker, M Sturek, J X Cheng. Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt, 12, 054007(2007).

    [101] G P Kwon, J L Schroeder, M J Amar, A T Remaley, R S Balaban et al. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation, 117, 2919-2927(2008).

    [102] A V Kachynski, A Pliss, A N Kuzmin, T Y Ohulchanskyy, A Baev et al. Photodynamic therapy by in situ nonlinear photon conversion. Nat Photonics, 8, 455-461(2014).

    [103] L Bonacina, Y Mugnier, F Courvoisier, R Le Dantec, J Extermann et al. Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy. Appl Phys B, 87, 399-403(2007).

    [104] X L Le, C Y Zhou, A Slablab, D Chauvat, C Tard et al. Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy. Small, 4, 1332-1336(2008).

    [105] A V Kachynski, A N Kuzmin, M Nyk, I Roy, P N Prasad. Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J Phys Chem C, 112, 10721-10724(2008).

    [106] J Butet, G Bachelier, I Russier-Antoine, C Jonin, E Benichou et al. Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. Phys Rev Lett, 105, 077401(2010).

    [107] J Butet, J Duboisset, G Bachelier, I Russier-Antoine, E Benichou et al. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett, 10, 1717-1721(2010).

    [108] M Zavelani-Rossi, M Celebrano, P Biagioni, D Polli, M Finazzi et al. Near-field second-harmonic generation in single gold nanoparticles. Appl Phys Lett, 92, 093119(2008).

    [109] C L Hsieh, R Grange, Y Pu, D Psaltis. Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes. Biomaterials, 31, 2272-2277(2010).

    [110] P Pantazis, J Maloney, D Wu, S E Fraser. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc Natl Acad Sci USA, 107, 14535-14540(2010).

    [111] T R Kuo, C L Wu, C T Hsu, W Lo, S J Chiang et al. Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials, 30, 3002-3008(2009).

    [112] T Magouroux, J Extermann, P Hoffmann, Y Mugnier, R L Dantec et al. High-speed tracking of murine cardiac stem cells by harmonic nanodoublers. Small, 8, 2752-2756(2012).

    [113] W D A M de Boer, J J Hirtz, A Capretti, T Gregorkiewicz, et al. Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles. Light Sci Appl, 7, 100(2018).

    [114] J X Cheng, X S Xie. Green's function formulation for third-harmonic generation microscopy. J Opt Soc Am B, 19, 1604-1610(2002).

    [115] L A Sordillo, Y Pu, S Pratavieira, Y Budansky, R R Alfano. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed Opt, 19, 056004(2014).

    [116] T Y F Tsang. Optical third-harmonic generation at interfaces. Phys Rev A, 52, 4116-4125(1995).

    [117] Y Barad, H Eisenberg, M Horowitz, Y Silberberg. Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett, 70, 922-924(1997).

    [118] D Yelin, Y Silberberg. Laser scanning third-harmonic-generation microscopy in biology. Opt Express, 5, 169-175(1999).

    [119] D Débarre, W Supatto, A M Pena, A Fabre, T Tordjmann et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods, 3, 47-53(2006).

    [120] S Y Chen, C S Hsieh, S W Chu, C Y Lin, C Y Ko et al. Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo. J Biomed Opt, 11, 054022(2006).

    [121] S R Pryke, L A Rollins, S C Griffith. Females use multiple mating and genetically loaded sperm competition to target compatible genes. Science, 329, 964-967(2010).

    [122] S W Chu, S Y Chen, T H Tsai, T M Liu, C Y Lin et al. In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt Express, 11, 3093-3099(2003).

    [123] M Yildirim, N Durr, A Ben-Yakar. Tripling the maximum imaging depth with third-harmonic generation microscopy. J. Biomed Opt, 20, 096013(2015).

    [124] A Karunendiran, R Cisek, D Tokarz, V Barzda, B A Stewart. Examination of Drosophila eye development with third harmonic generation microscopy. Biomed Opt Express, 8, 4504-4513(2017).

    [125] S P Tai, W J Lee, D B Shieh, P C Wu, H Y Huang et al. In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy. Opt Express, 14, 6178-6187(2006).

    [126] M R Tsai, S Y Chen, D B Shieh, P J Lou, C K Sun. In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy. Biomed Opt Express, 2, 2317-2328(2011).

    [127] W J Lee, C F Lee, S Y Chen, Y S Chen, C K Sun. Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy. J. Biomed Opt, 15, 046012(2010).

    [128] R Genthial, E Beaurepaire, M C Schanne-Klein, F Peyrin, D Farlay et al. Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy. Sci Rep, 7, 3419(2017).

    [129] D Tokarz, R Cisek, M N Wein, R Turcotte, C Haase et al. Intravital imaging of osteocytes in mouse calvaria using third harmonic generation microscopy. PLoS One, 12, e0186846(2017).

    [130] C K Tsai, T D Wang, J W Lin, R B Hsu, L Z Guo et al. Virtual optical biopsy of human adipocytes with third harmonic generation microscopy. Biomed Opt Express, 4, 178-186(2013).

    [131] B Weigelin, G J Bakker, P Friedl. Intravital third harmonic generation microscopy of collective melanoma cell invasion: Principles of interface guidance and microvesicle dynamics. IntraVital, 1, 32-43(2012).

    [132] G G Lee, H H Lin, M R Tsai, S Y Chou, W J Lee et al. Automatic cell segmentation and nuclear-to-cytoplasmic ratio analysis for third harmonic generated microscopy medical images. IEEE Trans Biomed Circuits Syst, 7, 158-168(2013).

    [133] J H Lee, S Y Chen, C H Yu, S W Chu, L F Wang et al. Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis. J Biomed Opt, 14, 014008(2009).

    [134] S P Tai, T H Tsai, W J Lee, D B Shieh, Y H Liao et al. Optical biopsy of fixed human skin with backward-collected optical harmonics signals. Opt Express, 13, 8231-8242(2005).

    [135] M R Tsai, Y H Cheng, J S Chen, Y S Sheen, Y H Liao et al. Differential diagnosis of nonmelanoma pigmented skin lesions based on harmonic generation microscopy. J Biomed Opt, 19, 036001(2014).

    [136] P C Wu, T Y Hsieh, Z U Tsai, T M Liu. In vivo quantification of the structural changes of collagens in a melanoma microenvironment with second and third harmonic generation microscopy. Sci Rep, 5, 8879(2015).

    [137] J Adur, V B Pelegati, A A De Thomaz, M O Baratti, D B Almeida et al. Optical biomarkers of serous and mucinous human ovarian tumor assessed with nonlinear optics microscopies. PLoS One, 7, e47007(2012).

    [138] N V Kuzmin, P Wesseling, P C de Witt Hamer, D P Noske, G D Galgano et al. Third harmonic generation imaging for fast, label-free pathology of human brain tumors. Biomed Opt Express, 7, 1889-1904(2016).

    [139] H Lim, D Sharoukhov, I Kassim, Y Q Zhang, J L Salzer et al. Label-free imaging of Schwann cell myelination by third harmonic generation microscopy. Proc Natl Acad Sci USA, 111, 18025-18030(2014).

    [140] S Witte, A Negrean, J C Lodder, C P J de Kock, G T Silva et al. Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc Natl Acad Sci USA, 108, 5970-5975(2011).

    [141] A A Lanin, A S Chebotarev, M S Pochechuev, I V Kelmanson, A B Fedotov et al. Three-photon-resonance-enhanced third-harmonic generation for label-free deep-brain imaging: In search of a chemical contrast. J Raman Spectrosc, 50, 1296-1302(2019).

    [142] A Kazarine, F Baakdah, A A Gopal, W Oyibo, E Georges et al. Malaria detection by third-harmonic generation image scanning cytometry. Anal Chem, 91, 2216-2223(2019).

    [143] L M G van Huizen, N V Kuzmin, E Barbé, S van der Velde, E A te Velde et al. Second and third harmonic generation microscopy visualizes key structural components in fresh unprocessed healthy human breast tissue. J Biophoton, 12, e201800297(2019).

    [144] D Yelin, D Oron, S Thiberge, E Moses, Y Silberberg. Multiphoton plasmon-resonance microscopy. Opt Express, 11, 1385-1391(2003).

    [145] M Lippitz, M A van Dijk, M Orrit. Third-harmonic generation from single gold nanoparticles. Nano Lett, 5, 799-802(2005).

    [146] O Schwartz, D Oron. Background-free third harmonic imaging of gold nanorods. Nano Lett, 9, 4093-4097(2009).

    [147] T M Liu, S P Tai, C H Yu, Y C Wen, S W Chu et al. Measuring plasmon-resonance enhanced third-harmonic χ(3) of Ag nanoparticles. Appl Phys Lett, 89, 043122(2006).

    [148] S P Tai, Y Wu, D B Shieh, L J Chen, K J Lin et al. Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles. Adv Mat, 19, 4520-4523(2007).

    [149] Y Jung, L Tong, A Tanaudommongkon, J X Cheng, C Yang et al. In vitro and in vivo nonlinear optical imaging of silicon nanowires. Nano Lett, 9, 2440-2444(2009).

    [150] C F Chang, H C Chen, M J Chen, W R Liu, W F Hsieh et al. Direct backward third-harmonic generation in nanostructures. Opt Express, 18, 7397-7406(2010).

    [151] N Chen, Y He, Y Y Su, X M Li, Q Huang et al. The cytotoxicity of cadmium-based quantum dots. Biomaterials, 33, 1238-1244(2012).

    [152] L Dubreil, I Leroux, M Ledevin, C Schleder, L Lagalice et al. Multi-harmonic imaging in the second near-infrared window of nanoparticle-labeled stem cells as a monitoring tool in tissue depth. ACS Nano, 11, 6672-6681(2017).

    [153] C W Lee, P C Wu, I L Hsu, T M Liu, W H Chong et al. New templated ostwald ripening process of mesostructured FeOOH for third-harmonic generation bioimaging. Small, 15, 1805086(2019).

    [154] R W Terhune, P D Maker, C M Savage. Measurements of nonlinear light scattering. Phys Rev Lett, 14, 681-684(1965).

    [155] R F Begley, A B Harvey, R L Byer. Coherent anti-stokes Raman spectroscopy. Appl Phys Lett, 25, 387-390(1974).

    [156] A Zumbusch, G R Holtom, X S Xie. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett, 82, 4142-4145(1999).

    [157] J X Cheng, Y K Jia, G F Zheng, X S Xie. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophys J, 83, 502-509(2002).

    [158] A Volkmer, J X Cheng, X S Xie. Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy. Phys Rev Lett, 87, 023901(2001).

    [159] J X Cheng, A Volkmer, L D Book, X S Xie. Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles. J Phys Chem B, 106, 8493-8498(2002).

    [160] M Müller, J M Schins. Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J Phys Chem B, 106, 3715-3723(2002).

    [161] X L Nan, W Y Yang, X S Xie. CARS microscopy lights up lipids in living cells. Biophoton Int, 11, 44-47(2004).

    [162] B Rakic, S M Sagan, M Noestheden, S Bélanger, X L Nan et al. Peroxisome proliferator-activated receptor ǁ antagonism inhibits hepatitis C virus replication. Chem Biol, 13, 23-30(2006).

    [163] X L Nan, A M Tonary, A Stolow, X S Xie, J P Pezacki et al. Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti-Stokes Raman scattering microscopies. Chem Bio Chem, 7, 1895-1897(2006).

    [164] T Hellerer, C Axäng, C Brackmann, P Hillertz, M Pilon et al. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci USA, 104, 14658-14663(2007).

    [165] X S Xie, J Yu, W Y Yang. Living cells as test tubes. Science, 312, 228-230(2006).

    [166] K Yen, T T Le, A Bansal, S D Narasimhan, J X Cheng et al. A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLoS One, 5, e12810(2010).

    [167] X L Nan, E O Potma, X S Xie. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy. Biophys J, 91, 728-735(2006).

    [168] R K Lyn, D C Kennedy, A Stolow, A Ridsdale, J P Pezacki et al. Dynamics of lipid droplets induced by the hepatitis C virus core protein. Biochem Biophys Res Commun, 399, 518-524(2010).

    [169] M Paar, C Jüngst, N A Steiner, C Magnes, F Sinner et al. Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem, 287, 11164-11173(2012).

    [170] C L Evans, E O Potma, M Puoris'haag, D Côté, C P Lin et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA, 102, 16807-16812(2005).

    [171] H G Breunig, M Weinigel, R Bückle, M Kellner-Höfer, J Lademann et al. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber. Laser Phys Lett, 10, 025604(2013).

    [172] C L Evans, X S Xie. Coherent anti-Stokes Raman Scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem, 1, 883-909(2008).

    [173] I Toytman, K Cohn, T Smith, D Simanovskii, D Palanker. Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination. Opt Lett, 32, 1941-1943(2007).

    [174] C Brackmann, M Esguerra, D Olausson, D Delbro, A Krettek et al. Coherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds. J Biomed Opt, 16, 021115(2011).

    [175] H W Wang, T T Le, J X Cheng. Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt Comm, 281, 1813-1822(2008).

    [176] H F Wang, Y Fu, P Zickmund, R Shi, J X Cheng. Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J, 89, 581-591(2005).

    [177] T B Huff, J X Cheng. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue. J Microsc, 225, 175-182(2007).

    [178] Y Fu, H F Wang, T B Huff, R Shi, J X Cheng. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. J Neurosci Res, 85, 2870-2881(2007).

    [179] J Yookyung, J H Ng, C P Keating, P Senthil-Kumar, J Zhao et al. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model. PLoS One, 9, e94054(2014).

    [180] C L Evans, X Y Xu, S Kesari, X S Xie, S T C Wong et al. Chemically-selective imaging of brain structures with CARS microscopy. Opt Express, 15, 12076-12087(2007).

    [181] F Légaré, C L Evans, , X S Xie. Towards CARS endoscopy. Optics Express, 14, 4427-4432(2006).

    [182] Jr C H Camp, Y J Lee, J M Heddleston, C M Hartshorn, A R H Walker et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nat Photon, 8, 627-634(2014).

    [183] T W Bocklitz, F S Salah, N Vogler, S Heuke, O Chernavskaia et al. Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool. BMC Cancer, 16, 534(2016).

    [184] D Petersen, L Mavarani, D Niedieker, E Freier, A Tannapfel et al. Virtual staining of colon cancer tissue by label-free Raman micro-spectroscopy. Analyst, 142, 1207-1215(2017).

    [185] R Galli, O Uckermann, A Temme, E Leipnitz, M Meinhardt et al. Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples. J Biophoton, 10, 404-414(2017).

    [186] A Karuna, F Masia, M Wiltshire, R Errington, W Langbein. Label-free volumetric quantitative imaging of the human somatic cell division by hyperspectral coherent anti-Stokes Raman scattering. Anal Chem, 91, 2813-2821(2019).

    [187] D Niedieker, F Grosserüschkamp, A Schreiner, K Barkovits, C Kötting et al. Label-free identification of myopathological features with coherent anti-Stokes Raman scattering. Muscle Nerve, 58, 456-459(2018).

    [188] K Hirose, S Fukushima, T Fukushima, H Niioka, M Hashimoto. Invited Article: Label-free nerve imaging with a coherent anti-Stokes Raman scattering rigid endoscope using two optical fibers for laser delivery. APL Photon, 3, 092407(2018).

    [189] E Kang, H F Wang, I K Kwon, J Robinson, J X Cheng. In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy. Anal Chem, 78, 8036-8043(2006).

    [190] C M Hartshorn, Y J Lee, Jr C H Camp, Z Liu, J Heddleston et al. Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy. Anal Chem, 85, 8102-8111(2013).

    [191] A L Fussell, F Grasmeijer, H W Frijlink, A H de Boer, H L Offerhaus. CARS microscopy as a tool for studying the distribution of micronised drugs in adhesive mixtures for inhalation. J Raman Spectrosc, 45, 495-500(2014).

    [192] L Tong, Y H Lu, R J Lee, J X Cheng. Imaging receptor-mediated endocytosis with a polymeric nanoparticle-based coherent anti-Stokes Raman scattering probe. J Phys Chem B, 111, 9980-9985(2007).

    [193] P S Xu, E Gullotti, L Tong, C B Highley, D R Errabelli et al. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol Pharm, 6, 190-201(2009).

    [194] N L Garrett, A Lalatsa, D Begley, L Mihoreanu, I F Uchegbu et al. Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy. J Raman Spectrosc, 43, 681-688(2012).

    [195] N Darville, J Saarinen, A Isomäki, L Khriachtchev, D Cleeren et al. Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal-cell interactions. Eur J Pharm Biopharm, 96, 338-348(2015).

    [196] C W Freudiger, W Min, B G Saar, S J Lu, G R Holtom et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322, 1857-1861(2008).

    [197] Y Ozeki, F Dake, S Kajiyama, K Fukui, K Itoh. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt Express, 17, 3651-3658(2009).

    [198] P Nandakumar, A Kovalev, A Volkmer. Vibrational imaging based on stimulated Raman scattering microscopy. New J Phys, 11, 033026(2009).

    [199] D L Zhang, M N Slipchenko, J X Cheng. Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss. J Phys Chem Lett, 2, 1248-1253(2011).

    [200] E R Andresen, P Berto, H Rigneault. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Opt Lett, 36, 2387-2389(2011).

    [201] H T Beier, G D Noojin, B A Rockwell. Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications. Opt Express, 19, 18885-18892(2011).

    [202] M N Slipchenko, R A Oglesbee, D L Zhang, W Wu, J X Cheng. Heterodyne detected nonlinear optical imaging in a lock-in free manner. J Biophoton, 5, 801-807(2012).

    [203] J X Cheng, X S Xie. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science, 350, aaa8870(2015).

    [204] E J Woodbury, W K Ng. Ruby laser operation in near IR. Proc Inst Radio Eng, 50, 2367(1962).

    [205] A Owyoung, E D Jones. Stimulated Raman spectroscopy using low-power cw lasers. Opt Lett, 1, 152-154(1977).

    [206] E Ploetz, S Laimgruber, S Berner, W Zinth, P Gilch. Femtosecond stimulated Raman microscopy. Appl Phys B, 87, 389-393(2007).

    [207] M C Wang, W Min, C W Freudiger, G Ruvkun, X S Xie. RNAi screening for fat regulatory genes with SRS microscopy. Nat Methods, 8, 135-138(2011).

    [208] W Dou, D L Zhang, Y Jung, J X Cheng, D M Umulis. Label-free imaging of lipid-droplet intracellular motion in early Drosophila embryos using femtosecond-stimulated Raman loss microscopy. Biophys J, 102, 1666-1675(2012).

    [209] P Wang, B Liu, D L Zhang, M Y Belew, H A Tissenbaum et al. Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations. Angew Chem Int Ed, 53, 11787-11792(2014).

    [210] C R Hu, D L Zhang, M N Slipchenko, J X Cheng, B Hu. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy. J Biomed Opt, 19, 086005(2014).

    [211] C W Freudiger, R Pfannl, D A Orringer, B G Saar, M B Ji et al. Multicolored stain-free histopathology with coherent Raman imaging. Lab Invest, 92, 1492-1502(2012).

    [212] F K Lu, M B Ji, D Fu, X H Ni, C W Freudiger et al. Multicolor stimulated Raman scattering (SRS) microscopy. Mol Phys, 110, 1927-1932(2012).

    [213] F K Lu, S Basu, V Igras, M P Hoang, M B Ji et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci USA, 112, 11624-11629(2015).

    [214] S H Yue, J J Li, S Y Lee, H J Lee, T Shao et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab, 19, 393-406(2014).

    [215] P Wang, J J Li, P Wang, C R Hu, D L Zhang et al. Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated raman scattering microscopy. Angew Chem Int Ed, 52, 13042-13046(2013).

    [216] J J Li, S Condello, J Thomes-Pepin, X X Ma, Y Xia et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell, 20, 303-314(2017).

    [217] R Mittal, M Balu, T Krasieva, E O Potma, L Elkeeb et al. Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin. Lasers Surg Med, 45, 496-502(2013).

    [218] M B Ji, D A Orringer, C W Freudiger, S Ramkissoon, X H Liu et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med, 5, 201ra119(2013).

    [219] M Jermyn, K Mok, J Mercier, J Desroches, J Pichette et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med, 7, 274ra19(2015).

    [220] M B Ji, M Arbel, L L Zhang, C W Freudiger, S S Hou et al. Label-free imaging of amyloid plaques in Alzheimer's disease with stimulated Raman scattering microscopy. Sci Adv, 4, eaat7715(2018).

    [221] S Yan, S S Cui, K Ke, B X Zhao, X L Liu et al. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer. Anal Chem, 90, 6362-6366(2018).

    [222] L Wei, Y Yu, Y H Shen, M C Wang, W Min. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proc Natl Acad Sci USA, 110, 11226-11231(2013).

    [223] J J Li, J X Cheng. Direct visualization of de novo lipogenesis in single living cells. Sci Rep, 4, 6807(2014).

    [224] Y H Shen, F Xu, L Wei, F H Hu, W Min. Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering. Angew Chem Int Ed, 53, 5596-5599(2014).

    [225] X S Li, Y Li, M J Jiang, W J Wu, S C He et al. Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans by stimulated Raman scattering microscopy. Anal Chem, 91, 2279-2287(2019).

    [226] M N Slipchenko, H T Chen, D R Ely, Y Jung, M T Carvajal et al. Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy. Analyst, 135, 2613-2619(2010).

    [227] D Fu, J Zhou, W J S Zhu, P W Manley, Y K Wang et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem, 6, 614-622(2014).

    [228] W S Chiu, N A Belsey, N L Garrett, J Moger, M B Delgado-Charro et al. Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy. Proc Natl Acad Sci USA, 112, 7725-7730(2015).

    [229] L Wei, W Min. Pump-probe optical microscopy for imaging nonfluorescent chromophores. Anal Bioanal Chem, 403, 2197-2202(2012).

    [230] M C Fischer, J W Wilson, F E Robles, W S Warren. Invited Review Article: Pump-probe microscopy. Rev Sci Instrum, 87, 031101(2016).

    [231] P T Dong, J X Chen. Pump-probe microscopy: theory, instrumentation, and application. Spectroscopy, 32, 24-36(2017).

    [232] C Y Dong, P T So, T French, E Gratton. Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys J, 69, 2234-2242(1995).

    [233] D Fu, T Ye, T E Matthews, G Yurtsever, Sr W S Warren. Two-color, two-photon, and excited-state absorption microscopy. J Biomed Opt, 12, 054004(2007).

    [234] F Dan, T Ye, T Matthews, B J Chen, G Yurtserver et al. High-resolution in vivo imaging of blood vessels without labeling. Opt Lett, 32, 2641-2643(2007).

    [235] W Min, S J Lu, S S Chong, R Roy, G R Holtom et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature, 461, 1105-1109(2009).

    [236] I R Piletic, T E Matthews, W S Warren. Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins. J Phys Chem A, 114, 11483-11491(2010).

    [237] T E Matthews, J W Wilson, S Degan, M J Simpson, J Y Jin et al. In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature.. Biomed Opt Express, 2, 1576-1583(2011).

    [238] F E Robles, S Deb, J W Wilson, C S Gainey, M A Selim et al. Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential. Biomed Opt Express, 6, 3631-3645(2015).

    [239] A J Chen, X J Yuan, J J Li, P T Dong, I Hamza et al. Label-free imaging of heme dynamics in living organisms by transient absorption microscopy. Anal Chem, 90, 3395-3401(2018).

    [240] P T Dong, H N Lin, K C Huang, J X Cheng. Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis. Sci Adv, 5, eaav0561(2019).

    [241] L Tong, Y X Liu, B D Dolash, Y Jung, M N Slipchenko et al. Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nat Nanotechnol, 7, 56-61(2012).

    [242] T Chen, F Lu, A M Streets, P Fei, J M Quan et al. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy. Nanoscale, 5, 4701-4705(2013).

    [243] T Chen, S H Chen, J H Zhou, D H Liang, X Y Chen et al. Transient absorption microscopy of gold nanorods as spectrally orthogonal labels in live cells. Nanoscale, 6, 10536-10539(2014).

    [244] J J Li, W X Zhang, T F Chung, M N Slipchenko et al. Highly sensitive transient absorption imaging of graphene and graphene oxide in living cells and circulating blood. Sci Rep, 5, 12394(2015).

    [245] C S Liao, M N Slipchenko, P Wang, J J Li, S Y Lee et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light Sci Appl, 4, e265(2015).

    Silu Zhang, Liwei Liu, Sheng Ren, Zilin Li, Yihua Zhao, Zhigang Yang, Rui Hu, Junle Qu. Recent advances in nonlinear optics for bio-imaging applications[J]. Opto-Electronic Advances, 2020, 3(10): 200003-1
    Download Citation