• Photonics Research
  • Vol. 10, Issue 1, 222 (2022)
Yiyin Zhou1、2, Solomon Ojo1、2, Chen-Wei Wu3, Yuanhao Miao1, Huong Tran1, Joshua M. Grant1、2, Grey Abernathy1、2, Sylvester Amoah1, Jake Bass1, Gregory Salamo4、5, Wei Du6, Guo-En Chang3, Jifeng Liu7, Joe Margetis8, John Tolle8, Yong-Hang Zhang8, Greg Sun9, Richard A. Soref9, Baohua Li10, and Shui-Qing Yu1、5、*
Author Affiliations
  • 1Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • 2Microelectronics-Photonics Program, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • 3Department of Mechanical Engineering, Taiwan Chung-Cheng University, Ming-Hsiung, Chiayi 62102, China
  • 4Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • 5Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • 6Department of Electrical Engineering and Physics, Wilkes University, Wilkes-Barre, Pennsylvania 18766, USA
  • 7Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
  • 8School of Electrical, Energy and Computer Engineering, Arizona State University, Tempe, Arizona 85287, USA
  • 9Department of Electrical Engineering, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
  • 10Arktonics, LLC, Fayetteville, Arkansas 72701, USA
  • show less
    DOI: 10.1364/PRJ.443144 Cite this Article Set citation alerts
    Yiyin Zhou, Solomon Ojo, Chen-Wei Wu, Yuanhao Miao, Huong Tran, Joshua M. Grant, Grey Abernathy, Sylvester Amoah, Jake Bass, Gregory Salamo, Wei Du, Guo-En Chang, Jifeng Liu, Joe Margetis, John Tolle, Yong-Hang Zhang, Greg Sun, Richard A. Soref, Baohua Li, Shui-Qing Yu. Electrically injected GeSn lasers with peak wavelength up to 2.7 μm[J]. Photonics Research, 2022, 10(1): 222 Copy Citation Text show less
    References

    [1] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4, 495-497(2010).

    [2] R. Soref, D. Buca, S.-Q. Yu. Group IV photonics: driving integrated optoelectronics. Opt. Photon. News, 27, 32-39(2016).

    [3] X. Wang, J. Liu. Emerging technologies in Si active photonics. J. Semicond., 39, 061001(2018).

    [4] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoca, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, D. Grützmacher. Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics, 9, 88-92(2015).

    [5] J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, S.-Q. Yu. Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K. ACS Photon., 5, 827-833(2017).

    [6] Q. Thai, N. Pauc, J. Aubin, M. Bertrand, J. Chrétien, V. Delaye, A. Chelnokov, J. Hartmann, V. Reboud, V. Calvo. GeSn heterostructure micro-disk laser operating at 230 K. Opt. Express, 26, 32500-32508(2018).

    [7] Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, S.-Q. Yu. Optically pumped GeSn lasers operating at 270 K with broad waveguide structures on Si. ACS Photon., 6, 1434-1441(2019).

    [8] J. Chrétien, N. Pauc, F. Armand Pilon, M. Bertrand, Q. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J. Hartmann, V. Calvo. GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain. ACS Photon., 6, 2462-2469(2019).

    [9] A. Elbaz, D. Buca, N. von den Driesch, K. Pantzas, G. Patriarche, N. Zerounian, E. Herth, X. Checoury, S. Sauvage, I. Sagnes, A. Foti, R. Ossikovski, J. Hartmann, F. Boeuf, Z. Ikonic, P. Boucaud, D. Grützmacher, M. El Kurdi. Ultra-low threshold cw and pulsed lasing in tensile strained GeSn alloys. Nat. Photonics, 14, 375-382(2020).

    [10] W. Du, Q. M. Thai, J. Chrétien, M. Bertrand, L. Casiez, Y. Zhou, J. Margetis, N. Pauc, A. Chelnokov, V. Reboud, V. Calvo, J. Tolle, B. Li, S.-Q. Yu. Study of Si-based GeSn optically pumped lasers with micro-disk and ridge waveguide structures. Front. Phys., 7, 147(2019).

    [11] D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, D. Buca. Optically pumped GeSn microdisk lasers on Si. ACS Photon., 3, 1279-1285(2016).

    [12] D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, D. Buca. GeSn/SiGeSn heterostructure and multi quantum well lasers. ACS Photon., 5, 4628-4636(2018).

    [13] J. Margetis, Y. Zhou, W. Dou. All group-IV SiGeSn/GeSn/SiGeSn QW laser on Si operating up to 90 K. Appl. Phys. Lett., 113, 221104(2018).

    [14] Y. Zhou, Y. Miao, S. Ojo, H. Tran, G. Abernathy, J. M. Grant, S. Amoah, G. Salamo, W. Du, J. Liu, J. Margetis, J. Tolle, Y.-H. Zhang, G. Sun, R. A. Soref, B. Li, S.-Q. Yu. Electrically injected GeSn lasers on Si operating up to 100 K. Optica, 7, 924-929(2020).

    [15] S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, A. Nazzal, G. Sun, R. A. Soref, J. Margetis, T. Joe, H. A. Naseem, S. Q. Yu. Shortwave-infrared photoluminescence from Ge1-xSnx thin films on silicon. J. Vac. Sci. Technol. B, 32, 060601(2014).

    [16] E. Garmire, H. Stoll. Propagation losses in metal-film-substrate optical waveguides. IEEE J. Quantum Electron., 8, 763-766(1972).

    [17] G. E. Chang, S. W. Chang, S. L. Chuang. Theory for n-type doped, tensile-strained Ge-SixGeySn1-x-y quantum-well lasers at telecom wavelength. Opt. Express, 17, 11246-11258(2009).

    [18] C. Chaminant, J. Charil, J.-C. Bouley, E. V. K. Rao. Growth and properties of GaAsSb/GaAIAsSb double heterostructure lasers. IEEE Trans. Electron. Dev., 3, 196-200(1979).

    [19] Y. Zhou, W. Dou, W. Du, T. Pham, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, J. Tolle, G. Sun, R. Soref, B. Li, M. Mortazavi, H. Naseem, S.-Q. Yu. Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications. J. Appl. Phys., 120, 023102(2016).

    [20] M. Bertrand, N. Pauc, Q. M. Thai, J. Chrétien, L. Casiez, A. Quintero, P. Rodriguez, R. Khazaka, J. Aubin, J. M. Hartmann, A. Chelnokov, V. Calvo, V. Reboud. Mid-infrared GeSn-based LEDs with Sn content up to 16%. IEEE 16th International Conference on Group IV Photonics, 1-2(2019).

    [21] S. L. Chuang. Physics of Photonic Devices, 416-417.

    [22] S. V. Kondratenko, Yu. V. Hyrka, Yu. I. Mazur, A. V. Kuchuk, W. Dou, H. Tran, J. Margetis, J. Tolle, S.-Q. Yu, G. J. Salamo. Photovoltage spectroscopy of direct and indirect bandgaps of strained Ge1-xSnx thin films on a Ge/Si(001) substrate. Acta Mater., 171, 40-47(2019).

    [23] H. Tran, W. Du, S. Ghetmiri, A. Mosleh, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, H. Naseem, S.-Q. Yu. Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics. J. Appl. Phys., 119, 103106(2016).

    Yiyin Zhou, Solomon Ojo, Chen-Wei Wu, Yuanhao Miao, Huong Tran, Joshua M. Grant, Grey Abernathy, Sylvester Amoah, Jake Bass, Gregory Salamo, Wei Du, Guo-En Chang, Jifeng Liu, Joe Margetis, John Tolle, Yong-Hang Zhang, Greg Sun, Richard A. Soref, Baohua Li, Shui-Qing Yu. Electrically injected GeSn lasers with peak wavelength up to 2.7 μm[J]. Photonics Research, 2022, 10(1): 222
    Download Citation