• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 3, 285 (2021)
Kai-Hao CHEN1、2, Zhi-Cheng XU1、*, Zhao-Ming LIANG1, Yi-Hong ZHU1, Jian-Xin CHEN1、**, and Li HE1
Author Affiliations
  • 1Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.03.001 Cite this Article
    Kai-Hao CHEN, Zhi-Cheng XU, Zhao-Ming LIANG, Yi-Hong ZHU, Jian-Xin CHEN, Li HE. Molecular beam epitaxy growth and characteristics of the high quantum efficiency InAs/GaSb type-II superlattices MWIR detector[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 285 Copy Citation Text show less
    References

    [1] D L Smith, C Mailhiot. PROPOSAL FOR STRAINED TYPE-II SUPERLATTICE INFRARED DETECTORS. Journal of Applied Physics, 62, 2545-2548(1987).

    [2] A Rogalski. Material considerations for third generation infrared photon detectors. Infrared Physics & Technology, 50, 240-252(2007).

    [3] E R Youngdale, J R Meyer, C A Hoffman et al. Auger lifetime enhancement in inas-ga1-xinxsb superlattices. Applied Physics Letters, 64, 3160-3162(1994).

    [4] GunapalaS D, TingD Z, HillC J, et al. Conference on Infrared Remote Sensing and Instrumentation XVIII, 2010,7808.

    [5] TingD Z, SoibelA, KhoshakhlaghA, et al. Conference on Infrared Technology and Applications XLIII, 2017,10177.

    [6] A Williams, M Tidrow. III-V infrared focal plane array development in US (Conference Presentation)(2018).

    [7] B C Connelly, G D Metcalfe, H E Shen et al. Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence. Applied Physics Letters, 97, 3(2010).

    [8] D Donetsky, G Belenky, S Svensson et al. Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials. Applied Physics Letters, 97, 3(2010).

    [9] J B Rodriguez, P Christol, L Cerutti et al. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection. Journal of Crystal Growth, 274, 6-13(2005).

    [10] Y Horikoshi. MIGRATION-ENHANCED EPITAXY OF GAAS AND ALGAAS. Semiconductor Science and Technology, 8, 1032-1051(1993).

    [11] Y Wei, W Q Ma, Y H Zhang et al. High Structural Quality of Type II InAs/GaSb Superlattices for Very Long Wavelength Infrared Detection by Interface Control. Ieee Journal of Quantum Electronics, 48, 512-515(2012).

    [12] Y H Zhang, W Q Ma, Y L Cao et al. Long Wavelength Infrared InAs/GaSb Superlattice Photodetectors with InSb-Like and Mixed Interfaces. Ieee Journal of Quantum Electronics, 47, 1475-1479(2011).

    [13] Z Xu, J Chen, F Wang et al. Interface layer control and optimization of InAs/GaSb type-II superlattices grown by molecular beam epitaxy. Journal of Crystal Growth, 386, 220-225(2014).

    [14] H J Haugan, G J Brown, L Grazulis. Effect of interfacial formation on the properties of very long wavelength infrared InAs/GaSb superlattices. Journal of Vacuum Science & Technology B, 29, 5(2011).

    [15] Z Xu, J Chen, F Wang et al. High quality mid-wavelength infrared InAs/GaSb superlattices by exploring the optimum molecular beam epitaxy growth process. Infrared Physics & Technology, 67, 8-13(2014).

    [16] M Huang, J X Chen, Y Zhou et al. Light-harvesting for high quantum efficiency in InAs-based InAs/GaAsSb type-II superlattices long wavelength infrared photodetectors. Applied Physics Letters, 114, 5(2019).

    [17] A Haddadi, G Chen, R Chevalier et al. InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection. Applied Physics Letters, 105, 4(2014).

    [18] RehmR, WaltherM, SchmitzJ, et al. Conference on Quantum Sensing and Nanophotonic Devices VI, 2009,7222.

    [19] G Chen, A M Hoang, S Bogdanov et al. Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array. Applied Physics Letters, 103, 4(2013).

    [20] V Gopal, E Plis, J B Rodriguez et al. Modeling of electrical characteristics of midwave type II InAs/GaSb strain layer superlattice diodes. Journal of Applied Physics, 104, 6(2008).

    [21] J Nguyen, D Z Ting, C J Hill et al. Dark current analysis of InAs/GaSb superlattices at low temperatures. Infrared Physics & Technology, 52, 317-321(2009).

    [22] A Rogalski, P Martyniuk, M Kopytko. Type-II superlattice photodetectors versus HgCdTe photodiodes. Progress in Quantum Electronics, 68, 19(2019).

    [23] B Nguyen, P-Y Delaunay, E Huang et al. State-of-the-art Type II antimonide-based superlattice photodiodes for infrared detection and imaging. Proc SPIE(2009).

    Kai-Hao CHEN, Zhi-Cheng XU, Zhao-Ming LIANG, Yi-Hong ZHU, Jian-Xin CHEN, Li HE. Molecular beam epitaxy growth and characteristics of the high quantum efficiency InAs/GaSb type-II superlattices MWIR detector[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 285
    Download Citation