• Photonics Research
  • Vol. 8, Issue 3, 331 (2020)
A. Pandey1, W. J. Shin1, J. Gim2, R. Hovden2, and Z. Mi1、*
Author Affiliations
  • 1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 2Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
  • show less
    DOI: 10.1364/PRJ.383652 Cite this Article Set citation alerts
    A. Pandey, W. J. Shin, J. Gim, R. Hovden, Z. Mi. High-efficiency AlGaN/GaN/AlGaN tunnel junction ultraviolet light-emitting diodes[J]. Photonics Research, 2020, 8(3): 331 Copy Citation Text show less
    References

    [1] World Health. Guidelines approved by the Guidelines Review Committee. Global Guidelines for the Prevention of Surgical Site Infection(2018).

    [2] World Health. Guidelines approved by the Guidelines Review Committee. Guidelines for Drinking-Water Quality(2017).

    [3] J. Shakya, K. Knabe, K. Kim, J. Li, J. Lin, H. Jiang. Polarization of III-nitride blue and ultraviolet light-emitting diodes. Appl. Phys. Lett., 86, 091107(2005).

    [4] P. Zhao, L. Han, M. R. McGoogan, H. Zhao. Analysis of TM mode light extraction efficiency enhancement for deep ultraviolet AlGaN quantum wells light-emitting diodes with III-nitride micro-domes. Opt. Mater. Express, 2, 1397-1406(2012).

    [5] M. Guttmann, F. Mehnke, B. Belde, F. Wolf, C. Reich, L. Sulmoni, T. Wernicke, M. Kneissl. Optical light polarization and light extraction efficiency of AlGaN-based LEDs emitting between 264 and 220 nm. Jpn. J. Appl. Phys., 58, SCCB20(2019).

    [6] J. Northrup, C. Chua, Z. Yang, T. Wunderer, M. Kneissl, N. Johnson, T. Kolbe. Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells. Appl. Phys. Lett., 100, 021101(2012).

    [7] K. Ban, J.-I. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano. Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl. Phys. Lett., 4, 052101(2011).

    [8] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, N. Kamata. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys. Status Solidi A, 206, 1176-1182(2009).

    [9] M. Nakarmi, N. Nepal, C. Ugolini, T. Altahtamouni, J. Lin, H. Jiang. Correlation between optical and electrical properties of Mg-doped AlN epilayers. Appl. Phys. Lett., 89, 152120(2006).

    [10] Y. Taniyasu, M. Kasu, T. Makimoto. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 441, 325-328(2006).

    [11] C. Stampfl, C. Van de Walle. Theoretical investigation of native defects, impurities, and complexes in aluminum nitride. Phys. Rev. B, 65, 155212(2002).

    [12] V. Mymrin, K. Bulashevich, N. Podolskaya, S. Y. Karpov. Bandgap engineering of electronic and optoelectronic devices on native AlN and GaN substrates: a modelling insight. J. Cryst. Growth, 281, 115-124(2005).

    [13] M. S. Shur, R. Gaska. Deep-ultraviolet light-emitting diodes. IEEE Trans. Electron Devices, 57, 12-25(2009).

    [14] Y. Kashima, N. Maeda, E. Matsuura, M. Jo, T. Iwai, T. Morita, M. Kokubo, T. Tashiro, R. Kamimura, Y. Osada, H. Takagi, H. Hirayama. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer. Appl. Phys. Lett., 11, 012101(2018).

    [15] M. Djavid, Z. Mi. Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl. Phys. Lett., 108, 051102(2016).

    [16] X. Liu, K. Mashooq, T. Szkopek, Z. Mi. Improving the efficiency of transverse magnetic polarized emission from AlGaN based LEDs by using nanowire photonic crystal. IEEE Photon. J., 10, 4501211(2018).

    [17] S. Zhao, H. P. Nguyen, M. G. Kibria, Z. Mi. III-Nitride nanowire optoelectronics. Progr. Quantum Electron., 44, 14-68(2015).

    [18] P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, Z. Qin. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl. Phys. Lett., 102, 241113(2013).

    [19] H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, N. Kamata. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett., 91, 071901(2007).

    [20] N. Susilo, S. Hagedorn, D. Jaeger, H. Miyake, U. Zeimer, C. Reich, B. Neuschulz, L. Sulmoni, M. Guttmann, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl. Phys. Lett., 112, 041110(2018).

    [21] J. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunev, M. Shur, R. Gaska, M. Shatalov, J. Yang, M. A. Khan. AlGaN-based 280 nm light-emitting diodes with continuous-wave power exceeding 1 mW at 25 mA. Appl. Phys. Lett., 85, 5532-5534(2004).

    [22] T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, H. Hirayama. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Lett., 10, 031002(2017).

    [23] S. Vilhunen, H. Särkkä, M. Sillanpää. Ultraviolet light-emitting diodes in water disinfection. Environ. Sci. Pollut. Res., 16, 439-442(2009).

    [24] S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, H. Yanagi. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure. Appl. Phys. Lett., 106, 131104(2015).

    [25] S.-I. Inoue, N. Tamari, M. Taniguchi. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl. Phys. Lett., 110, 141106(2017).

    [26] G.-D. Hao, N. Tamari, T. Obata, T. Kinoshita, S.-I. Inoue. Electrical determination of current injection and internal quantum efficiencies in AlGaN-based deep-ultraviolet light-emitting diodes. Opt. Express, 25, A639-A648(2017).

    [27] Y. Liao, C. Kao, C. Thomidis, A. Moldawer, J. Woodward, D. Bhattarai, T. Moustakas. Recent progress of efficient deep UV-LEDs by plasma-assisted molecular beam epitaxy. Phys. Status Solidi C, 9, 798-801(2012).

    [28] G.-B. Lin, D. Meyaard, J. Cho, E. Fred Schubert, H. Shim, C. Sone. Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency. Appl. Phys. Lett., 100, 161106(2012).

    [29] H. Hirayama, Y. Tsukada, T. Maeda, N. Kamata. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Lett., 3, 031002(2010).

    [30] J. Zhang, Y. Zhu, T. Egawa, S. Sumiya, M. Miyoshi, M. Tanaka. Influence of pulse width on electroluminescence and junction temperature of AlInGaN deep ultraviolet light-emitting diodes. Appl. Phys. Lett., 92, 191917(2008).

    [31] A. Chitnis, J. Sun, V. Mandavilli, R. Pachipulusu, S. Wu, M. Gaevski, V. Adivarahan, J. Zhang, M. A. Khan, A. Sarua, M. Kuball. Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm. Appl. Phys. Lett., 81, 3491-3493(2002).

    [32] J. Yun, J.-I. Shim, H. Hirayama. Analysis of efficiency droop in 280-nm AlGaN multiple-quantum-well light-emitting diodes based on carrier rate equation. Appl. Phys. Lett., 8, 022104(2015).

    [33] W. Sun, M. Shatalov, J. Deng, X. Hu, J. Yang, A. Lunev, Y. Bilenko, M. Shur, R. Gaska. Efficiency droop in 245–247 nm AlGaN light-emitting diodes with continuous wave 2 mW output power. Appl. Phys. Lett., 96, 061102(2010).

    [34] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, N. Kamata. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys., 53, 100209(2014).

    [35] N. Maeda, M. Jo, H. Hirayama. Improving the efficiency of AlGaN deep-UV LEDs by using highly reflective Ni/Al p-type electrodes. Phys. Status Solidi A, 215, 1700435(2018).

    [36] Y. Zhang, Z. Jamal-Eddine, F. Akyol, S. Bajaj, J. M. Johnson, G. Calderon, A. A. Allerman, M. W. Moseley, A. M. Armstrong, J. Hwang, S. Rajan. Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency. Appl. Phys. Lett., 112, 071107(2018).

    [37] Y. Zhang, S. Krishnamoorthy, F. Akyol, J. M. Johnson, A. A. Allerman, M. W. Moseley, A. M. Armstrong, J. Hwang, S. Rajan. Reflective metal/semiconductor tunnel junctions for hole injection in AlGaN UV LEDs. Appl. Phys. Lett., 111, 051104(2017).

    [38] F. Akyol, S. Krishnamoorthy, Y. Zhang, J. Johnson, J. Hwang, S. Rajan. Low-resistance GaN tunnel homojunctions with 150 kA/cm2 current and repeatable negative differential resistance. Appl. Phys. Lett., 108, 131103(2016).

    [39] E. A. Clinton, E. Vadiee, S.-C. Shen, K. Mehta, P. D. Yoder, W. A. Doolittle. Negative differential resistance in GaN homojunction tunnel diodes and low voltage loss tunnel contacts. Appl. Phys. Lett., 112, 252103(2018).

    [40] S.-R. Jeon, Y.-H. Song, H.-J. Jang, G. M. Yang, S. W. Hwang, S. J. Son. Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions. Appl. Phys. Lett., 78, 3265-3267(2001).

    [41] S. Krishnamoorthy, D. N. Nath, F. Akyol, P. S. Park, M. Esposto, S. Rajan. Polarization-engineered GaN/InGaN/GaN tunnel diodes. Appl. Phys. Lett., 97, 203502(2010).

    [42] Z.-H. Zhang, S. Tiam Tan, Z. Kyaw, Y. Ji, W. Liu, Z. Ju, N. Hasanov, X. Wei Sun, H. Volkan Demir. InGaN/GaN light-emitting diode with a polarization tunnel junction. Appl. Phys. Lett., 102, 193508(2013).

    [43] M. Diagne, Y. He, H. Zhou, E. Makarona, A. Nurmikko, J. Han, K. Waldrip, J. Figiel, T. Takeuchi, M. Krames. Vertical cavity violet light emitting diode incorporating an aluminum gallium nitride distributed Bragg mirror and a tunnel junction. Appl. Phys. Lett., 79, 3720-3722(2001).

    [44] T. Takeuchi, G. Hasnain, S. Corzine, M. Hueschen, R. P. Schneider, C. Kocot, M. Blomqvist, Y.-l. Chang, D. Lefforge, M. R. Krames. GaN-based light emitting diodes with tunnel junctions. Jpn. J. Appl. Phys., 40, L861-L863(2001).

    [45] M. J. Grundmann, U. K. Mishra. Multi-color light emitting diode using polarization-induced tunnel junctions. Phys. Status Solidi C, 4, 2830-2833(2007).

    [46] S. Lee, C. A. Forman, C. Lee, J. Kearns, E. C. Young, J. T. Leonard, D. A. Cohen, J. S. Speck, S. Nakamura, S. P. DenBaars. GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition. Appl. Phys. Lett., 11, 062703(2018).

    [47] Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, S. Rajan. Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes. Appl. Phys. Lett., 109, 191105(2016).

    [48] Y. Zhang, S. Krishnamoorthy, F. Akyol, S. Bajaj, A. A. Allerman, M. W. Moseley, A. M. Armstrong, S. Rajan. Tunnel-injected sub-260 nm ultraviolet light emitting diodes. Appl. Phys. Lett., 110, 201102(2017).

    [49] C. Kuhn, L. Sulmoni, M. Guttmann, J. Glaab, N. Susilo, T. Wernicke, M. Weyers, M. Kneissl. MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent UVC LEDs. Photon. Res., 7, B7-B11(2019).

    [50] A. Pandey, X. Liu, Z. Deng, W. Shin, D. Laleyan, K. Mashooq, E. Reid, E. Kioupakis, P. Bhattacharya, Z. Mi. Enhanced doping efficiency of ultrawide band gap semiconductors by metal-semiconductor junction assisted epitaxy. Phys. Rev. Mater., 3, 053401(2019).

    [51] J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 327, 60-64(2010).

    [52] Y. Zhang, S. Krishnamoorthy, F. Akyol, A. A. Allerman, M. W. Moseley, A. M. Armstrong, S. Rajan. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions. Appl. Phys. Lett., 109, 121102(2016).

    [53] M. Auf der Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, A. Di Carlo. Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes. Appl. Phys. Lett., 105, 133504(2014).

    [54] X. Cao, E. Stokes, P. Sandvik, S. LeBoeuf, J. Kretchmer, D. Walker. Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes. IEEE Electron Device Lett., 23, 535-537(2002).

    [55] C. Bayram, Z. Vashaei, M. Razeghi. Reliability in room-temperature negative differential resistance characteristics of low-aluminum content AlGaN/GaN double-barrier resonant tunneling diodes. Appl. Phys. Lett., 97, 181109(2010).

    [56] V. Fan Arcara, B. Damilano, G. Feuillet, S. Vézian, K. Ayadi, S. Chenot, J.-Y. Duboz. Ge doped GaN and Al0.5Ga0.5N-based tunnel junctions on top of visible and UV light emitting diodes. J. Appl. Phys., 126, 224503(2019).

    [57] E. Vadiee, E. A. Clinton, H. McFavilen, A. S. Weidenbach, Z. Engel, C. Matthews, C. Zhang, C. Arena, R. R. King, C. B. Honsberg. InGaN solar cells with regrown GaN homojunction tunnel contacts. Appl. Phys. Lett., 11, 082304(2018).

    [58] E. C. Young, B. P. Yonkee, F. Wu, S. H. Oh, S. P. DenBaars, S. Nakamura, J. S. Speck. Hybrid tunnel junction contacts to III-nitride light-emitting diodes. Appl. Phys. Lett., 9, 022102(2016).

    [59] Y.-J. Lee, C.-H. Chen, C.-J. Lee. Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells. IEEE Photon. Technol. Lett., 22, 1506-1508(2010).

    [60] J. Piprek. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A, 207, 2217-2225(2010).

    [61] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett., 91, 183507(2007).

    [62] E. Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett., 98, 161107(2011).

    [63] X. Hai, R. Rashid, S. Sadaf, Z. Mi, S. Zhao. Effect of low hole mobility on the efficiency droop of AlGaN nanowire deep ultraviolet light emitting diodes. Appl. Phys. Lett., 114, 101104(2019).

    [64] D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. Fred Schubert, H. Shim, M.-H. Kim, C. Sone. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes. Appl. Phys. Lett., 99, 251115(2011).

    [65] N. H. Tran, B. H. Le, S. Zhao, Z. Mi. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures. Appl. Phys. Lett., 110, 032102(2017).

    [66] R. Collazo, S. Mita, J. Xie, A. Rice, J. Tweedie, R. Dalmau, Z. Sitar. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys. Status Solidi C, 8, 2031-2033(2011).

    [67] X. Liu, A. Pandey, D. A. Laleyan, K. Mashooq, E. T. Reid, W. J. Shin, Z. Mi. Charge carrier transport properties of Mg-doped Al0.6Ga0.4N grown by molecular beam epitaxy. Semicond. Sci. Technol., 33, 085005(2018).

    [68] A. Bhattacharyya, T. Moustakas, L. Zhou, D. J. Smith, W. Hug. Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency. Appl. Phys. Lett., 94, 181907(2009).

    [69] Y. Liao, C. Thomidis, C.-K. Kao, T. D. Moustakas. AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy. Appl. Phys. Lett., 98, 081110(2011).

    [70] Y. Wang, A. S. Özcan, K. F. Ludwig, A. Bhattacharyya, T. Moustakas, L. Zhou, D. J. Smith. Complex and incommensurate ordering in Al0.72Ga0.28N thin films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett., 88, 181915(2006).

    [71] O. Ambacher, B. Foutz, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, A. Sierakowski, W. Schaff, L. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys., 87, 334-344(2000).

    [72] J. Simon, Z. Zhang, K. Goodman, H. Xing, T. Kosel, P. Fay, D. Jena. Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures. Phys. Rev. Lett., 103, 026801(2009).

    [73] Y. Gu, N. Narendran, T. Dong, H. Wu. Spectral and luminous efficacy change of high-power LEDs under different dimming methods. Proc. SPIE, 6337, 63370J(2006).

    [74] J. Cho, E. F. Schubert, J. K. Kim. Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser Photon. Rev., 7, 408-421(2013).

    [75] S. Karpov. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quantum Electron., 47, 1293-1303(2015).

    [76] F. Nippert, M. Tollabi Mazraehno, M. J. Davies, M. P. Hoffmann, H.-J. Lugauer, T. Kure, M. Kneissl, A. Hoffmann, M. R. Wagner. Auger recombination in AlGaN quantum wells for UV light-emitting diodes. Appl. Phys. Lett., 113, 071107(2018).

    CLP Journals

    [1] Huabin Yu, Zhongjie Ren, Muhammad Hunain Memon, Shi Fang, Danhao Wang, Zhongling Liu, Haochen Zhang, Feng Wu, Jiangnan Dai, Changqing Chen, Haiding Sun. Cascaded deep ultraviolet light-emitting diode via tunnel junction[J]. Chinese Optics Letters, 2021, 19(8): 082503

    A. Pandey, W. J. Shin, J. Gim, R. Hovden, Z. Mi. High-efficiency AlGaN/GaN/AlGaN tunnel junction ultraviolet light-emitting diodes[J]. Photonics Research, 2020, 8(3): 331
    Download Citation