• Advanced Photonics
  • Vol. 3, Issue 3, 034001 (2021)
Yuanjie Yang1、*, Yu-Xuan Ren2、*, Mingzhou Chen3、*, Yoshihiko Arita3、4, and Carmelo Rosales-Guzmán5、6、*
Author Affiliations
  • 1University of Electronic Science and Technology of China, School of Physics, Chengdu, China
  • 2University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong SAR, China
  • 3University of St Andrews, SUPA, School of Physics and Astronomy, St Andrews, United Kingdom
  • 4Chiba University, Molecular Chirality Research Center, Chiba, Japan
  • 5Centro de Investigaciones en Óptica, A.C., León, Guanajuato, Mexico
  • 6Harbin University of Science and Technology, Wang Da-Heng Collaborative Innovation Center for Quantum Manipulation and Control, Harbin, China
  • show less
    DOI: 10.1117/1.AP.3.3.034001 Cite this Article Set citation alerts
    Yuanjie Yang, Yu-Xuan Ren, Mingzhou Chen, Yoshihiko Arita, Carmelo Rosales-Guzmán. Optical trapping with structured light: a review[J]. Advanced Photonics, 2021, 3(3): 034001 Copy Citation Text show less
    References

    [1] J. Keppler. De cometis libelli tres(1619).

    [2] M. Daly, M. Sergides, S. N. Chormaic. Optical trapping and manipulation of micrometer and submicrometer particles. Laser Photonics Rev., 9, 309-329(2015).

    [3] M. Woerdemann et al. Advanced optical trapping by complex beam shaping. Laser Photonics Rev., 7, 839-854(2013).

    [4] C. L. Hardin. The scientific work of the Reverend John Michell. Ann. Sci., 22, 27-47(1966).

    [5] S. Arrhenius. Das Werden der Welten(1907).

    [6] J. C. Maxwell. A Treatise on Electricity and Magnetism, 2(1873).

    [7] P. Lebedew. Untersuchungen über die Druckkräfte des Lichtes. Ann. Phys., 311, 433-458(1901).

    [8] P. Ledebew. An experimental investigation of the pressure of light. Astrophys. J., 15, 60-62(1902).

    [9] E. F. Nichols, G. F. Hull. A preliminary communication on the pressure of heat and light radiation. Phys. Rev., 13, 307-320(1901).

    [10] J. H. Poynting. Some astronomical consequences of the pressure of light. Nature, 75, 90-93(1906).

    [11] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 330, 377-445(1908).

    [12] P. Debye. Der Lichtdruck auf Kugeln von beliebigem material. Ann. Phys., 335, 57-136(1909).

    [13] H. Robertson. Dynamical effects of radiation in the solar system. Mon. Not. R. Astron. Soc., 97, 423-437(1937).

    [14] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159(1970).

    [15] A. Ashkin et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [16] D. Stevenson, F. Gunn-Moore, K. Dholakia. Light forces the pace: optical manipulation for biophotonics. J. Biomed. Opt., 15, 041503(2010).

    [17] F. M. Fazal, S. M. Block. Optical tweezers study life under tension. Nat. Photonics, 5, 318-321(2011).

    [18] A. Ashkin, J. Dziedzic, T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330, 769-771(1987).

    [19] D. Chang et al. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett., 103, 123004(2009).

    [20] A. Ashkin. Optical trapping and manipulation of neutral particles using lasers. Proc. Nat. Acad. Sci. U. S. A., 94, 4853-4860(1997).

    [21] K. Dholakia, P. Zemánek. Gripped by light: optical binding. Rev. Mod. Phys., 82, 1767-1791(2010).

    [22] H. Li et al. Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy. J. Am. Chem. Soc., 128, 5711-5717(2006).

    [23] P. W. Smith, A. Ashkin, W. J. Tomlinson. Four-wave mixing in an artificial Kerr medium. Opt. Lett., 6, 284-286(1981).

    [24] A. Ashkin, J. M. Dziedzic, P. W. Smith. Continuous-wave self-focusing and self-trapping of light in artificial Kerr media. Opt. Lett., 7, 276-278(1982).

    [25] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian modes. Phys. Rev. A, 45, 8185-8189(1992).

    [26] J. Arlt et al. Optical micromanipulation using a Bessel light beam. Opt. Commun., 197, 239-245(2001).

    [27] T. A. Nieminen et al. Physics of optical tweezers. Methods Cell Biol., 82, 207-236(2007).

    [28] H. Li et al. Optical pulling forces and their applications. Adv. Opt. Photonics, 12, 288-366(2020).

    [29] P. Zemánek et al. Perspective on light-induced transport of particles: from optical forces to phoretic motion. Adv. Opt. Photonics, 11, 577-678(2019).

    [30] J. Millen et al. Optomechanics with levitated particles. Rep. Prog. Phys., 83, 026401(2020).

    [31] K. Dholakia, B. W. Drinkwater, M. Ritsch-Marte. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys., 2, 480-491(2020).

    [32] T. Omatsu et al. A new twist for materials science: the formation of chiral structures using the angular momentum of light. Adv. Opt. Mater., 7, 1801672(2019).

    [33] E. Otte, C. Denz. Optical trapping gets structure: structured light for advanced optical manipulation. Appl. Phys. Rev., 7, 041308(2020).

    [34] C. Bradac. Nanoscale optical trapping: a review. Adv. Opt. Mater., 6, 1800005(2018).

    [35] O. Maragò et al. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol., 8, 807-819(2013).

    [36] K. Dholakia, T. Čižmár. Shaping the future of manipulation. Nat. Photonics, 5, 335-342(2011).

    [37] R. Bowman, M. Padgett. Optical trapping and binding. Rep. Prog. Phys., 76, 026401(2013).

    [38] P. Polimeno et al. Optical tweezers and their applications. J. Quant. Spectrosc. Radiat. Transfer, 218, 131-150(2018).

    [39] Y. Harada, T. Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun., 124, 529-541(1996).

    [40] A. B. Stilgoe et al. The effect of Mie resonances on trapping in optical tweezers. Opt. Express, 16, 15039-15051(2008).

    [41] P. Jones, O. Marago, G. Volpe. Optical Tweezers: Principles and Applications(2015).

    [42] S. E. S. Skelton, K. Dholakia. Trapping in a material world. ACS Photonics, 3, 719-736(2016).

    [43] M. Friese et al. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348-350(1998).

    [44] K.-N. Liou. A complementary theory of light scattering by homogeneous spheres. Appl. Math. Comput., 3, 331-358(1977).

    [45] G. Gouesbet, G. Gréhan. Generalized Lorenz-Mie Theories(2011).

    [46] L.-M. Zhou et al. Sensitivity of displacement detection for a particle levitated in the doughnut beam. Opt. Lett., 43, 4582-4585(2018).

    [47] P. Langevin. Sur la théorie du mouvement brownien. C. R. Acad. Sci. (Paris), 146, 530-533(1908).

    [48] K. Berg-Sørensen, H. Flyvbjerg. Power spectrum analysis for optical tweezers. Rev. Sci. Instrum., 75, 594-612(2004).

    [49] J. Poynting. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. London A, 82, 560-567(1909).

    [50] R. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).

    [51] A. Fernández-Nieves et al. Optically anisotropic colloids of controllable shape. Adv. Mat., 17, 680-684(2005).

    [52] G. Tkachenko, E. Brasselet. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat. Commun., 5, 4491(2014).

    [53] I. A. Vovk et al. Chiral nanoparticles in singular light fields. Sci. Rep., 7, 45925(2017).

    [54] H. He et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 75, 826-829(1995).

    [55] H. He, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical particle trapping with higher-order doughnut beams produced using high effciency computer generated holograms. J. Mod. Opt., 42, 217-223(1995).

    [56] M. Friese et al. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A, 54, 1593-1596(1996).

    [57] S. Parkin et al. Measurement of the total optical angular momentum transfer in optical tweezers. Opt. Express, 14, 6963-6970(2006).

    [58] A. O’Neil et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett., 88, 053601(2002).

    [59] V. Garces-Chavez et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett., 91, 093602(2003).

    [60] N. B. Simpson et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett., 22, 52-54(1997).

    [61] K. T. Gahagan, G. A. Swartzlander. Trapping of low-index microparticles in an optical vortex. Opt. Lett., 21, 827-829(1996).

    [62] K. Gahagan, G. Swartzlander. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B, 15, 524-534(1998).

    [63] J. Durnin. Diffraction-free beams. Phys. Rev. Lett., 58, 1499-1501(1987).

    [64] D. McGloin, K. Dholakia. Bessel beams: diffraction in a new light. Contemp. Phys., 46, 15-28(2005).

    [65] R. P. MacDonald et al. Interboard optical data distribution by Bessel beam shadowing. Opt. Commun., 122, 169-177(1996).

    [66] Z. Bouchal, J. Wagner, M. Chlup. Self-reconstruction of a distorted nondiffracting beam. Opt. Commun., 151, 207-211(1998).

    [67] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [68] V. Garcés-Chávez et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature, 419, 145-147(2002).

    [69] F. Gori, G. Guattari, C. Padovani. Bessel–Gauss beams. Opt. Commun., 64, 491-495(1987).

    [70] K. Volke-Sepúlveda et al. Orbital angular momentum of a high-order Bessel light beam. J. Opt. B, 4, S82-S89(2002).

    [71] A. S. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizón. Generation of the ‘perfect’ optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 38, 534-536(2013).

    [72] J. Pinnell, V. Rodríguez-Fajardo, A. Forbes. How perfect are perfect vortex beams?. Opt. Lett., 44, 5614-5617(2019).

    [73] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 40, 597-600(2015).

    [74] G. Tkachenko et al. Is it possible to create a perfect fractional vortex beam?. Optica, 4, 330-333(2017).

    [75] Y. Roichman, D. Grier. Three-dimensional holographic ring traps. Proc. SPIE, 6483, 64830F(2007).

    [76] Y. Roichman et al. Optical forces arising from phase gradients. Phys. Rev. Lett., 100, 013602(2008).

    [77] P. Figliozzi et al. Driven optical matter: dynamics of electrodynamically coupled nanoparticles in an optical ring vortex. Phys. Rev. E, 95, 022604(2017).

    [78] Y. Sokolov et al. Hydrodynamic pair attractions between driven colloidal particles. Phys. Rev. Lett., 107, 158302(2011).

    [79] K. Saito, S. Okubo, Y. Kimura. Change in collective motion of colloidal particles driven by an optical vortex with driving force and spatial confinement. Soft Matter, 14, 6037-6042(2018).

    [80] Y. Sassa et al. Hydrodynamically induced rhythmic motion of optically driven colloidal particles on a ring. Phys. Rev. E, 85, 061402(2012).

    [81] J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, S. Chávez-Cerda. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett., 25, 1493-1495(2000).

    [82] J. C. Gutiérrez-Vega, R. M. Rodríguez-Dagnino. Mathieu functions, a visual approach. Am. J. Phys., 71, 233-242(2003).

    [83] F. W. Olver et al. NIST Handbook of Mathematical Functions Hardback and CD-ROM(2010).

    [84] G. A. Siviloglou, D. N. Christodoulides. Accelerating finite energy Airy beams. Opt. Lett., 32, 979-981(2007).

    [85] G. A. Siviloglou et al. Observation of accelerating Airy beams. Phys. Rev. Lett., 99, 213901(2007).

    [86] M. A. Bandres, J. C. Gutiérrez-Vega. Ince–Gaussian modes of the paraxial wave equation and stable resonators. J. Opt. Soc. Am. A, 21, 873-880(2004).

    [87] et al. Classically entangled Ince–Gaussian modes. Appl. Phys. Lett., 116, 221105(2020).

    [88] C. Alonzo, P. Rodrigo, J. Glückstad. Helico-conical optical beams: a product of helical and conical phase fronts. Opt. Express, 13, 1749-1760(2005).

    [89] N. Hermosa, C. Rosales-Guzmán, J. P. Torres. Helico-conical optical beams self-heal. Opt. Lett., 38, 383-385(2013).

    [90] D. G. Hall. Vector-beam solutions of maxwell’s wave equation. Opt. Lett., 21, 9-11(1996).

    [91] M. A. Bandres, J. C. Gutierrez-Vega. Vector helmholtz-gauss and vector laplace-gauss beams. Opt. Lett., 30, 2155-2157(2005).

    [92] S. Chen et al. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt. Lett., 39, 5274-5276(2014).

    [93] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 1, 1-57(2009).

    [94] S. C. Tidwell, D. H. Ford, W. D. Kimura. Generating radially polarized beams interferometrically. Appl. Opt., 29, 2234-2239(1990).

    [95] N. Passilly et al. Simple interferometric technique for generation of a radially polarized light beam. J. Opt. Soc. Am. A, 22, 984-991(2005).

    [96] J. Mendoza-Hernández et al. Cylindrical vector beam generator using a two-element interferometer. Opt. Express, 27, 31810-31819(2019).

    [97] N. Radwell et al. Achromatic vector vortex beams from a glass cone. Nat. Commun., 7, 10564(2016).

    [98] Y. Kozawa, S. Sato. Generation of a radially polarized laser beam by use of a conical brewster prism. Opt. Lett., 30, 3063-3065(2005).

    [99] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [100] D. Naidoo et al. “Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 10, 327-332(2016).

    [101] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [102] J. A. Davis et al. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. Appl. Opt., 39, 1549-1554(2000).

    [103] I. Moreno et al. Complete polarization control of light from a liquid crystal spatial light modulator. Opt. Express, 20, 364-376(2012).

    [104] C. Rosales-Guzmán, N. Bhebhe, A. Forbes. Simultaneous generation of multiple vector beams on a single SLM. Opt. Express, 25, 25697-25706(2017).

    [105] S. Liu et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photonics Res., 6, 228-233(2018).

    [106] Y.-X. Ren, R.-D. Lu, L. Gong. Tailoring light with a digital micromirror device. Ann. Phys., 527, 447-470(2015).

    [107] Z.-X. Fang et al. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam. Opt. Express, 26, 7324-7335(2018).

    [108] Y.-X. Ren et al. Dynamic generation of Ince–Gaussian modes with a digital micromirror device. J. Appl. Phys., 117, 133106(2015).

    [109] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [110] M. P. MacDonald et al. Creation and manipulation of three-dimensional optically trapped structrues. Science, 296, 1101-1103(2002).

    [111] M. G. Donato et al. Optical trapping, optical binding, and rotational dynamics of silicon nanowires in counter-propagating beams. Nano Lett., 19, 342-352(2018).

    [112] L.-M. Zhou et al. Optical levitation of nanodiamonds by doughnut beams in vacuum. Laser Photonics Rev., 11, 1600284(2017).

    [113] Y. Li, L. Zhou, N. Zhao. Anomalous motion of a particle levitated by Laguerre–Gaussian beams. Opt. Lett., 46, 106-109(2021).

    [114] A. Jesacher et al. Reverse orbiting of microparticles in optical vortices. Opt. Lett., 31, 2824-2826(2006).

    [115] F. G. Mitri. Reverse orbiting and spinning of a Rayleigh dielectric spheroid in a J0 Bessel optical beam. J. Opt. Soc. Am. B, 34, 2169-2178(2017). https://doi.org/10.1364/JOSAB.34.002169

    [116] K. Diniz et al. Negative optical torque on a microsphere in optical tweezers. Opt. Express, 27, 5905-5917(2019).

    [117] D. Hakobyan, E. Brasselet. Left-handed optical radiation torque. Nat. Photonics, 8, 610-614(2014).

    [118] T. Čižmár, V. Garcés-Chávez, K. Dholakia. Optical conveyor belt for delivery of submicron objects. Appl. Phys. Lett., 86, 174101(2005).

    [119] E. Mcleod, C. Arnold. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat. Nanotechnol., 3, 413-417(2008).

    [120] R. A. B. Suarez et al. Experimental optical trapping with frozen waves. Opt. Lett., 45, 2514-2517(2020).

    [121] M. Šiler et al. Optical forces induced behavior of a particle in a non-diffracting vortex beam. Opt. Express, 20, 24304-24319(2012).

    [122] Z. Yan, N. F. Scherer. Optical vortex induced rotation of silver nanowires. J. Phys. Chem. Lett., 4, 2937-2942(2013).

    [123] M. Chen et al. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett., 38, 4919-4922(2013).

    [124] M. Chen et al. Creating and probing of a perfect vortex in situ with an optically trapped particle. Opt. Rev., 22, 162-165(2015).

    [125] C. Alpmann et al. Mathieu beams as versatile light moulds for 3D micro particle assemblies. Opt. Express, 18, 26084-26091(2010).

    [126] S. Chavez-Cerda et al. Holographic generation and orbital angular momentum of high-order Mathieu beams. J. Opt. B, 4, S52-S57(2002).

    [127] C. Lopez-Mariscal et al. Orbital angular momentum transfer in helical Mathieu beams. Opt. Express, 14, 4182-4187(2006).

    [128] D. Christodoulides. Riding along an Airy beam. Nat. Photonics, 2, 652-653(2008).

    [129] J. Baumgartl, M. Mazilu, K. Dholakia. Optically mediated particle clearing using Airy wavepackets. Nat. Photonics, 2, 675-678(2008).

    [130] M. Chen et al. Optical trapping and rotating of micro-particles using the circular Airy vortex beams. Appl. Phys. B, 125, 184(2019).

    [131] B. Chen et al. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Opt. Express, 23, 19288-19298(2015).

    [132] M. Woerdemann, C. Alpmann, C. Denz. Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams. App. Phys. Lett., 98, 111101(2011).

    [133] V. Daria, D. Palima, J. Glückstad. Optical twists in phase and amplitude. Opt. Express, 19, 476-481(2011).

    [134] R. Dame, M. Noom, G. Wuite. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature, 444, 387-390(2006).

    [135] E. R. Dufresne et al. Computer-generated holographic optical tweezer arrays. Rev. Sci. Instrum., 72, 1810-1816(2001).

    [136] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [137] G. Sinclair et al. Interactive application in holographic optical tweezers of a multi-plane Gerchberg–Saxton algorithm for three-dimensional light shaping. Opt. Express, 12, 1665-1670(2004).

    [138] M. Preciado, K. Dholakia, M. Mazilu. Generation of attenuation-compensating Airy beams. Opt. Lett., 39, 4950-4953(2014).

    [139] J. E. Curtis, B. A. Koss, D. G. Grier. Dynamic holographic optical tweezers. Opt. Commun., 207, 169-175(2002).

    [140] P. Jordan et al. Creating permanent 3D arrangements of isolated cells using holographic optical tweezers. Lab Chip, 5, 1224-1228(2005).

    [141] J. Leach et al. 3D manipulation of particles into crystal structures using holographic optical tweezers. Opt. Express, 12, 220-226(2004).

    [142] J. Curtis, D. Grier. Modulated optical vortices. Opt. Lett., 28, 872-874(2003).

    [143] A. Belmonte, J. Torres. Optical Doppler shift with structured light. Opt. Lett., 36, 4437-4439(2011).

    [144] C. Rosales-Guzmán et al. Experimental detection of transverse particle movement with structured light. Sci. Rep., 3, 2815(2013).

    [145] C. N. Hermosa, A. Belmonte, J. P. Torres. Measuring the translational and rotational velocities of particles in helical motion using structured light beams. Opt. Express, 22, 16504-16509(2014).

    [146] S. Lee, Y. Roichman, D. Grier. Optical solenoid beams. Opt. Express, 18, 6988-6993(2010).

    [147] E. Shanblatt, D. Grier. Extended and knotted optical traps in three dimensions. Opt. Express, 19, 5833-5838(2011).

    [148] J. Rodrigo et al. Shaping of light beams along curves in three dimensions. Opt. Express, 21, 20544-20555(2013).

    [149] J. Rodrigo, T. Alieva. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2, 812-815(2015).

    [150] J. Rodrigo, M. Angulo, T. Alieva. Programmable optical transport of particles in knot circuits and networks. Opt. Lett., 43, 4244-4247(2018).

    [151] J. Rodrigo, M. Angulo, T. Alieva. Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles. Opt. Express, 26, 18608-18620(2018).

    [152] J. Rodrigo, M. Angulo, T. Alieva. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories. Photonics Res., 9, 1-12(2021).

    [153] C. Rosales-Guzmán, B. Ndagano, A. Forbes. A review of complex vector light fields and their applications. J. Opt., 20, 123001(2018).

    [154] H. Rubinsztein-Dunlop et al. Roadmap on structured light. J. Opt., 19, 013001(2017).

    [155] G. Lerman, L. Stern, U. Levy. Generation and tight focusing of hybridly polarized vector beams. Opt. Express, 18, 27650-27657(2010).

    [156] K. Youngworth, T. Brown. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express, 7, 77-87(2000).

    [157] R. Dorn, S. Quabis, G. Leuchs. Sharper focus for a radially polarized light beam. Phys. Rev. Lett., 91, 233901(2003).

    [158] W. Chen, Q. Zhan. Three-dimensional focus shaping with cylindrical vector beams. Opt. Commun., 265, 411-417(2006).

    [159] E. Otte, K. Tekce, C. Denz. Tailored intensity landscapes by tight focusing of singular vector beams. Opt. Express, 25, 20194-20201(2017).

    [160] G. Lerman, U. Levy. Effect of radial polarization and apodization on spot size under tight focusing conditions. Opt. Express, 16, 4567-4581(2008).

    [161] N. Bhebhe, C. Rosales-Guzman, A. Forbes. Classical and quantum analysis of propagation invariant vector flat-top beams. Appl. Opt., 57, 5451-5458(2018).

    [162] X. Weng et al. Creation of tunable multiple 3D dark spots with cylindrical vector beam. Appl. Opt., 53, 2470-2476(2014).

    [163] X. Wang et al. Configurable three-dimensional optical cage generated from cylindrical vector beams. Opt. Commun., 282, 3421-3425(2009).

    [164] S. Hell, E. Stelzer. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A, 9, 2159-2166(1992).

    [165] N. Bokor, N. Davidson. Toward a spherical spot distribution with 4π focusing of radially polarized light. Opt. Lett., 29, 1968-1970(2004). https://doi.org/10.1364/OL.29.001968

    [166] M. Lang et al. 4Pi microscopy with negligible sidelobes. New J. Phys., 10, 043041(2008).

    [167] S. Khonina, I. Golub. Engineering the smallest 3D symmetrical bright and dark focal spots. J. Opt. Soc. Am. A, 30, 2029-2033(2013).

    [168] X. Li et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun., 3, 998(2012).

    [169] M. Michihata, T. Hayashi, Y. Takaya. Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam. Appl. Opt., 48, 6143-6151(2009).

    [170] Y. Kozawa, S. Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express, 18, 10828-10833(2010).

    [171] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 12, 3377-3382(2004).

    [172] L. Huangu. Optical trapping of gold nanoparticles by cylindrical vector beam. Opt. Lett., 37, 1694-1696(2012).

    [173] S. Yan, B. Yao. Radiation forces of a highly focused radially polarized beam on spherical particles. Phys. Rev. A, 76, 053836(2007).

    [174] B. Roxworthy, K. Toussaint. Optical trapping with π-phase cylindrical vector beams. New J. Phys., 12, 073012(2010). https://doi.org/10.1088/1367-2630/12/7/073012

    [175] N. Bhebhe et al. A vector holographic optical trap. Sci. Rep., 8, 17387(2018).

    [176] J. Chen et al. Optical pulling force. Nat. Photonics, 5, 531-534(2011).

    [177] A. Novitsky, C.-W. Qiu, H. Wang. Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett., 107, 203601(2011).

    [178] S. Sukhov, A. Dogariu. Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects. Phys. Rev. Lett., 107, 203602(2011).

    [179] J. Saenz. Laser tractor beams. Nat. Photonics, 5, 514-515(2011).

    [180] W. Ding et al. Photonic tractor beams: a review. Adv. Photonics, 1, 024001(2019).

    [181] O. Brzobohatý et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nat. Photonics, 7, 123-127(2013).

    [182] V. Shvedov et al. A long-range polarization-controlled optical tractor beam. Nat. Photonics, 8, 846-850(2014).

    [183] A. Ashkin. Applications of laser radiation pressure. Science, 210, 1081-1088(1980).

    [184] K. Svoboda, S. M. Block. Optical trapping of metallic Rayleigh particles. Opt. Lett., 19, 930-932(1994).

    [185] M. Dienerowitz et al. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express, 16, 4991-4999(2008).

    [186] A. Lehmuskero et al. Plasmonic particles set into fast orbital motion by an optical vortex beam. Opt. Express, 22, 4349-4356(2014).

    [187] Z. Yan, M. Sajjan, N. F. Scherer. Fabrication of a material assembly of silver nanoparticles using the phase gradients of optical tweezers. Phys. Rev. Lett., 114, 143901(2015).

    [188] J. A. Rodrigo, M. Angulo, T. Alieva. Tailored optical propulsion forces for controlled transport of resonant gold nanoparticles and associated thermal convective fluid flows. Light Sci. Appl., 9, 181(2020).

    [189] C. W. Peterson et al. Controlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradients. Nano Lett., 19, 897-903(2019).

    [190] J. Gieseler et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett., 109, 103603(2012).

    [191] F. Tebbenjohanns et al. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett., 122, 223601(2019).

    [192] V. Jain et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett., 116, 243601(2016).

    [193] G. P. Conangla et al. Optimal feedback cooling of a charged levitated nanoparticle with adaptive control. Phys. Rev. Lett., 122, 223602(2019).

    [194] F. Tebbenjohanns et al. Motional sideband asymmetry of a nanoparticle optically levitated in free space. Phys. Rev. Lett., 124, 013603(2020).

    [195] U. Delić et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett., 122, 123602(2019).

    [196] D. Windey et al. Cavity-based 3D cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett., 122, 123601(2019).

    [197] N. Meyer et al. Resolved-sideband cooling of a levitated nanoparticle in the presence of laser phase noise. Phys. Rev. Lett., 123, 153601(2019).

    [198] U. Delić et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).

    [199] J. Gieseler et al. Optical tweezers — from calibration to applications: a tutorial. Adv. Opt. Photon., 13, 74-241(2021).

    [200] U. Delić et al. Levitated cavity optomechanics in high vacuum. Quant. Sci. Technol., 5, 025006(2020).

    [201] M. Mazilu et al. Orbital-angular-momentum transfer to optically levitated microparticles in vacuum. Phys. Rev. A, 94, 053821(2016).

    [202] Y. Arita et al. Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential. J. Opt. Soc. Am. B, 34, C14-C19(2017).

    [203] S. Kuhn et al. Optically driven ultra-stable nanomechanical rotor. Nat. Commun., 8, 1670(2017).

    [204] S. Thanvanthri, K. T. Kapale, J. P. Dowling. Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light. Phys. Rev. A, 77, 053825(2008).

    [205] L. P. Neukirch et al. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat. Photonics, 9, 653-657(2015).

    [206] V. Blickle, C. Bechinger. Realization of a micrometre-sized stochastic heat engine. Nat. Phys., 8, 143-146(2012).

    [207] I. A. Martínez et al. Brownian Carnot engine. Nat. Phys., 12, 67-70(2016).

    [208] J. Millen et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotechnol., 9, 425-429(2014).

    [209] L. Rondin et al. Direct measurement of Kramers turnover with a levitated nanoparticle. Nat. Nanotechnol., 12, 1130-1133(2017).

    [210] X. Y. Duan et al. Transverse optical binding for a dual dipolar dielectric nanoparticle dimer. Phys. Rev. A, 103, 013721(2021).

    [211] Y. Arita et al. Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances. Opt. Lett., 40, 4751-4754(2015).

    [212] Y. Arita, E. M. Wright, K. Dholakia. Optical binding of two cooled micro-gyroscopes levitated in vacuum. Optica, 5, 910-917(2018).

    [213] R. Riedinger et al. Remote quantum entanglement between two micromechanical oscillators. Nature, 556, 473-477(2018).

    [214] R. Zhao et al. Rotational quantum friction. Phys. Rev. Lett., 109, 123604(2012).

    [215] A. Manjavacas, F. J. G. de Abajo. Vacuum friction in rotating particles. Phys. Rev. Lett., 105, 113601(2010).

    [216] A. Manjavacas, F. J. G. de Abajo. Thermal and vacuum friction acting on rotating particles. Phys. Rev. A, 82, 063827(2010).

    [217] G. Ranjit et al. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum. Phys. Rev. A, 91, 051805(2015).

    [218] F. Monteiro et al. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Phys. Rev. A, 96, 063841(2017).

    [219] J. Gieseler, L. Novotny, R. Quidant. Thermal nonlinearities in a nanomechanical oscillator.. Nat. Phys., 9, 806-810(2013).

    [220] T. Li, S. Kheifets, M. Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys., 7, 527-530(2011).

    [221] J. Ahn et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [222] L. P. Neukirch et al. Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Opt. Lett., 38, 2976-2979(2013).

    [223] Y. Arita, M. Mazilu, K. Dholakia. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun., 4, 2374(2013).

    [224] F. Monteiro et al. Optical rotation of levitated spheres in high vacuum. Phys. Rev. A, 97, 051802(2018).

    [225] D. C. Moore, A. D. Rider, G. Gratta. Search for millicharged particles using optically levitated microspheres. Phys. Rev. Lett., 113, 251801(2014).

    [226] T. Li et al. Measurement of the instantaneous velocity of a Brownian particle. Science, 328, 1673-1675(2010).

    [227] B. R. Slezak et al. Cooling the motion of a silica microsphere in a magneto-gravitational trap in ultra-high vacuum. New J. Phys., 20, 063028(2018).

    [228] Y. Zheng et al. Robust optical-levitation-based metrology of nanoparticle’s position and mass. Phys. Rev. Lett., 124, 223603(2020).

    [229] V. Svak et al. Stochastic dynamics of optically bound matter levitated in vacuum. Optica, 8, 220-229(2021).

    [230] A. Ashkin, J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science, 235, 1517-1520(1987).

    [231] G. R. Kirkham et al. Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci. Rep., 5, 8577(2015).

    [232] A. Ashkin, J. M. Dziedzic. Internal cell manipulation using infrared laser traps. Proc. Natl. Acad. Sci., 86, 7914-7918(1989).

    [233] H. Xin et al. Optically controlled living micromotors for the manipulation and disruption of biological targets. Nano Lett., 20, 7177-7185(2020).

    [234] H. Xin et al. Optical forces: from fundamental to biological applications. Adv. Mater., 32, 2001994(2020).

    [235] Z. Zhang, T. E. P. Kimkes, M. Heinemann. Manipulating rod-shaped bacteria with optical tweezers. Sci. Rep., 9, 19086(2019).

    [236] A. S Bezryadina et al. Optical disassembly of cellular clusters by tunable ‘tug-of-war’ tweezers. Light Sci. Appl., 5, e16158(2016).

    [237] A. Favre-Bulle et al. Optical trapping in vivo: theory, practice, and applications. Nanophotonics, 8, 1023-1040(2019).

    [238] M.-C. Zhong et al. Trapping red blood cells in living animals using optical tweezers. Nat. Commun., 4, 1768(2013).

    [239] P. L. Johansen et al. Optical micromanipulation of nanoparticles and cells inside living zebrafish. Nat. Commun., 7, 10974(2016).

    [240] N. McAlinden et al. Accurate position tracking of optically trapped live cells. Biomed. Opt. Express, 5, 1026-1037(2014).

    [241] R. Diekmann et al. Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nat. Commun., 7, 13711(2016).

    [242] D. Gao et al. Unveiling the correlation between non‐diffracting tractor beam and its singularity in Poynting vector. Laser Photonics Rev., 9, 75-82(2015).

    [243] Y. Bai et al. Properties of a tightly focused circularly polarized anomalous vortex beam and its optical forces on trapped nanoparticles. Nanoscale Res. Lett., 14, 252(2019).

    [244] Y. Yang et al. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation. Nanophotonics, 7, 677-682(2018).

    [245] M. Dong et al. Trapping two types of Rayleigh particles using a focused partially coherent anomalous vortex beam. Appl. Phys. B, 125, 55(2019).

    [246] X. Liu et al. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Appl. Phys. Lett., 110, 181104(2017).

    [247] X. Li et al. Is it possible to enlarge the trapping range of optical tweezers via a single beam?. Appl. Phys. Lett., 114, 081903(2019).

    [248] H. Zhang et al. Grafted optical vortex with controllable orbital angular momentum distribution. Opt. Express, 27, 22930-22938(2019).

    [249] W. Y. Tsai, J. S. Huang, C. B. Huang. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Lett., 14, 547-552(2014).

    [250] P. Genevet et al. Generation of two-dimensional plasmonic bottle beams. Opt. Express, 21, 10295-10300(2013).

    [251] I. V. Minin et al. Experimental demonstration of a tunable photonic hook by a partially illuminated dielectric microcylinder. Opt. Lett., 45, 4899-4902(2020).

    [252] P. R. Huft et al. Holographic plasmonic nanotweezers for dynamic trapping and manipulation. Nano Lett., 17, 7920-7925(2017).

    [253] K. Sakai, T. Yamamoto, K. Sasaki. Nanofocusing of structured light for quadrupolar light-matter interactions. Sci. Rep., 8, 7746(2018).

    [254] Y. Arita et al. Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Sci. Adv., 6, eaaz9858(2020).

    [255] C. F. Phelan, T. Hennessy, T. Busch. Shaping the evanescent field of optical nanofibers for cold atom trapping. Opt. Express, 21, 27093-27101(2013).

    [256] A. Maimaiti et al. Higher order microfibre modes for dielectric particle trapping and propulsion. Sci. Rep., 5, 9077(2015).

    [257] C. Pin et al. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide. Lab Chip, 18, 1750-1757(2018).

    [258] T. Zhu et al. Mode conversion enables optical pulling force in photonic crystal waveguides. Appl. Phys. Lett., 111, 061105(2017).

    [259] M. Sadgrove, S. Wimberger, S. N. Chormaic. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide. Sci. Rep., 6, 28905(2016).

    [260] A. Zannotti et al. Shaping caustics into propagation-invariant light. Nat. Commun., 11, 3597(2020).

    [261] D. S. Bradshaw, D. L. Andrews. Interactions between spherical nanoparticles optically trapped in Laguerre–Gaussian modes. Opt. Lett., 30, 3039-3041(2005).

    [262] M. Tamura et al. Interparticle-interaction-mediated anomalous acceleration of nanoparticles under light-field with coupled orbital and spin angular momentum. Nano Lett., 19, 4873-4878(2019).

    [263] H. Zheng et al. Electron beam manipulation of nanoparticles. Nano Lett., 12, 5644-5648(2012).

    [264] J. Verbeeck, H. Tian, G. Van Tendeloo. How to manipulate nanoparticles with an electron beam?. Adv. Mater., 25, 1114-1117(2013).

    CLP Journals

    [1] Yihua Bai, Haoran Lv, Xin Fu, Yuanjie Yang. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chinese Optics Letters, 2022, 20(1): 012601

    [2] Fengya Lu, Lei Gong, Yan Kuai, Xi Tang, Yifeng Xiang, Pei Wang, Douguo Zhang. Controllable optofluidic assembly of biological cells using an all-dielectric one-dimensional photonic crystal[J]. Photonics Research, 2022, 10(1): 14

    [3] Xutong Wang, Sheng Yu, Shengshuai Liu, Kai Zhang, Yanbo Lou, Wei Wang, Jietai Jing. Deterministic generation of large-scale hyperentanglement in three degrees of freedom[J]. Advanced Photonics Nexus, 2022, 1(1): 016002

    [4] Chuangye Zhang, Changjun Min, Yuquan Zhang, Yanan Fu, Ling Li, Yulong Wang, Xiaocong Yuan. Detection of cylindrical vector beams with chiral plasmonic lens[J]. Chinese Optics Letters, 2022, 20(2): 023602

    [5] Xi Xie, Xianyou Wang, Changjun Min, Haixiang Ma, Yunqi Yuan, Zhangyu Zhou, Yuquan Zhang, Jing Bu, Xiaocong Yuan. Single-particle trapping and dynamic manipulation with holographic optical surface-wave tweezers[J]. Photonics Research, 2022, 10(1): 166

    [6] Shiyao Fu, Zijun Shang, Lan Hai, Lei Huang, Yanlai Lv, Chunqing Gao. Orbital angular momentum comb generation from azimuthal binary phases[J]. Advanced Photonics Nexus, 2022, 1(1): 016003

    [7] Bojian Shi, Yongyin Cao, Tongtong Zhu, Hang Li, Yanxia Zhang, Rui Feng, Fangkui Sun, Weiqiang Ding. Multiparticle resonant optical sorting using a topological photonic structure[J]. Photonics Research, 2022, 10(2): 297

    Yuanjie Yang, Yu-Xuan Ren, Mingzhou Chen, Yoshihiko Arita, Carmelo Rosales-Guzmán. Optical trapping with structured light: a review[J]. Advanced Photonics, 2021, 3(3): 034001
    Download Citation