• Advanced Photonics
  • Vol. 3, Issue 3, 034001 (2021)
Yuanjie Yang1、*, Yu-Xuan Ren2、*, Mingzhou Chen3、*, Yoshihiko Arita3、4, and Carmelo Rosales-Guzmán5、6、*
Author Affiliations
  • 1University of Electronic Science and Technology of China, School of Physics, Chengdu, China
  • 2University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong SAR, China
  • 3University of St Andrews, SUPA, School of Physics and Astronomy, St Andrews, United Kingdom
  • 4Chiba University, Molecular Chirality Research Center, Chiba, Japan
  • 5Centro de Investigaciones en Óptica, A.C., León, Guanajuato, Mexico
  • 6Harbin University of Science and Technology, Wang Da-Heng Collaborative Innovation Center for Quantum Manipulation and Control, Harbin, China
  • show less
    DOI: 10.1117/1.AP.3.3.034001 Cite this Article Set citation alerts
    Yuanjie Yang, Yu-Xuan Ren, Mingzhou Chen, Yoshihiko Arita, Carmelo Rosales-Guzmán. Optical trapping with structured light: a review[J]. Advanced Photonics, 2021, 3(3): 034001 Copy Citation Text show less

    Abstract

    Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer. In the case of 3D trapping with a single beam, this is termed optical tweezers. Optical tweezers are a powerful and noninvasive tool for manipulating small objects, and have become indispensable in many fields, including physics, biology, soft condensed matter, among others. In the early days, optical trapping was typically accomplished with a single Gaussian beam. In recent years, we have witnessed rapid progress in the use of structured light beams with customized phase, amplitude, and polarization in optical trapping. Unusual beam properties, such as phase singularities on-axis and propagation invariant nature, have opened up novel capabilities to the study of micromanipulation in liquid, air, and vacuum. We summarize the recent advances in the field of optical trapping using structured light beams.

    Video Introduction to the Article

    F=14Re(αp)|E|2+σ(αp)2cRe(E×H*)+σ(αp)c×(ϵ04ωiE×E*),(1)

    View in Article

    αp=α01iα0k3/6πϵm,(2)

    View in Article

    Fgrad=2πnmr3c(η21η2+2)I(r),(3)

    View in Article

    Fscat=8πnmk4r63c(η21η2+2)2I(r)z^,(4)

    View in Article

    Γ0x˙=κ0x+Fth,(5)

    View in Article

    Sx(f)=4Γ0kBT/κ021+f2/fc2,(6)

    View in Article

    0Sx(f)df=x2=kBTκ0.(7)

    View in Article

    LGp(ρ,φ,z)=ω0ω(z)2p!π(||+p)!(2ρω(z))||Lp||[2(ρω(z))2]×exp[i(2p+||+1)ξ(z)]×exp[(ρω(z))2]exp[ikρ22R(z)]exp(iφ),(8)

    View in Article

    B(ρ,φ,z)=E0J(ktρ)exp(ikzz)exp(φ),(9)

    View in Article

    B(ρ,φ,0)=J(ktρ)exp[(ρω0)2]exp(iφ).(10)

    View in Article

    V(ρ,θ)=exp(ρρ0Δρ2)eiθ,(11)

    View in Article

    [2ξ2+2η2+f2kt22(cosh2ξcos2η)]uT(ξ,η)=0.(12)

    View in Article

    Mme(ξ,η,z;q)=CmJem(ξ;q)cem(η;q)exp(ikzz),(13)

    View in Article

    Mmo(ξ,η,z;q)=SmJom(ξ;q)sem(η;q)exp(ikzz).(14)

    View in Article

    MGme(ξ˜,η˜,z;q)=exp(ikt22kzμ)Mme(ξ˜,η˜,z;q)exp(r2μω02)exp(ikz)μ,(15)

    View in Article

    MGmo(ξ˜,η˜,z;q)=exp(ikt22kzμ)Mmo(ξ˜,η˜,z;q)exp(r2μω02)exp(ikz)μ.(16)

    View in Article

    A(sx,sy,ξ)=Ai[sx(ξ2)2]Ai[sy(ξ2)2]exp[iξ2(sx+syξ33)],(17)

    View in Article

    A0(sx,sy,ξ)=Ai[sx(ξ2)2+ibξ]Ai[sy(ξ2)2+ibξ]×exp[b(sx+sy)bξ2+ibξ2ξ36+iξ(sx+sy)2],(18)

    View in Article

    F1{A0(sx,sy)}exp[b(kx2+ky2)]exp[i(kx3+ky3)3],(19)

    View in Article

    IGp,me(r,ϵ)=Cω0ω(z)Cpm(iξ,ϵ)Cpm(η,ϵ)exp(r2ω2(z))exp{i[kz+k22R(z)(p+1)ξ(z)]},(20)

    View in Article

    IGp,mo(r,ϵ)=Sω0ω(z)Spm(iξ,ϵ)Spm(η,ϵ)exp(r2ω2(z))exp{i[kz+k22R(z)(p+1)ξ(z)]},(21)

    View in Article

    ψ(r,φ)=φ(Kr/ro),(22)

    View in Article

    U(r)=u1(r)eiδ1e^R+u2(r)eiδ2e^L,(23)

    View in Article

    U(r)=12(LGp11eiδ1e^R+LGp22eiδ2e^L).(24)

    View in Article

    U(r)=12(LG0e^R+LG0eiδe^L).(25)

    View in Article

    UTE(r)=12(LG01e^R+LG01e^L),(26)

    View in Article

    UTM(r)=12(LG01e^RLG01e^L),(27)

    View in Article

    UHEo(r)=12(LG01e^L+LG01e^R),(28)

    View in Article

    UHEe(r)=12(LG01e^LLG01e^R).(29)

    View in Article

    Ef(ρ)=k2πfeiθ(ρ)d2rEin(r)eikr·ρ/f,(30)

    View in Article

    R(θ)=aλNA[1+10dφ(θ)dθ],(31)

    View in Article

    Raλ/NA(1+/0),(32)

    View in Article

    uγ,(r,z)=m=[γk]||mγ2Jm(qmR)exp[i(m)γz]exp(imθ)Jm(qmr),(33)

    View in Article

    R0(s)=R(cos(sR)cosβ,sin(sR),cos(sR)sinβ),(34)

    View in Article

    E(r0)=0Tg(t)exp[ik2f2uz(t)r02]exp[ikfr0R(t)]dt,(35)

    View in Article

    E˜(r,z=uz(t))=iλexp[ikuz(t)]f0Tg(t)δ[1f(R(t)r)]dt.(36)

    View in Article

    Ψ(t)=2πS(T)S(t),(37)

    View in Article

    S(t)=0t|c(τ)|dτ.(38)

    View in Article

    E(r)=1T0TΦ(r,t)φ(r,t)|c2(t)|dt(39)

    View in Article

    Φ(r,t)=exp{iρ2[yx0(t)xy0(t)]}exp[i2πmS(T)S(t)],(40)

    View in Article

    S(t)=0t[x0(τ)y0(τ)y0(τ)x0(τ)]dτ,(41)

    View in Article

    φ(r,t)=exp{iπ[xx0(t)]2+[yy0(t)]2λf2z0(t)},(42)

    View in Article

    bn(τ)=(1τ)3Ps(n)+3τ(1τ)2Ts(n)+3τ2(1τ)2Te(n)+τ3Pe(n),(43)

    View in Article

    c(t)={b1(τ),b2(τ),,bm(τ)},(44)

    View in Article

    mx¨=Γ0x˙κ0x+Fth,(45)

    View in Article

    Sx(ω)=kBTπmΓ0(ω2Ω02)2+ω2Γ02,(46)

    View in Article

    x2=kBTCMmΩ02.(47)

    View in Article

    Yuanjie Yang, Yu-Xuan Ren, Mingzhou Chen, Yoshihiko Arita, Carmelo Rosales-Guzmán. Optical trapping with structured light: a review[J]. Advanced Photonics, 2021, 3(3): 034001
    Download Citation