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Abstract. Optical trapping describes the interaction between light and matter to manipulate micro-objects
through momentum transfer. In the case of 3D trapping with a single beam, this is termed optical tweezers.
Optical tweezers are a powerful and noninvasive tool for manipulating small objects, and have become
indispensable in many fields, including physics, biology, soft condensed matter, among others. In the early
days, optical trapping was typically accomplished with a single Gaussian beam. In recent years, we have
witnessed rapid progress in the use of structured light beams with customized phase, amplitude, and polariza-
tion in optical trapping. Unusual beam properties, such as phase singularities on-axis and propagation
invariant nature, have opened up novel capabilities to the study of micromanipulation in liquid, air, and
vacuum. We summarize the recent advances in the field of optical trapping using structured light beams.
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1 Introduction
Light–matter interaction has a long history in both physics and
astronomy. About 400 years ago, Kepler observed the deflection
of a comet’s tail away from the Sun, which may constitute the
first reported conjecture of the radiation force.1–3 In the 1700s,
John Michell attempted to measure radiation pressure,4 while
Euler hypothesized that light beams induce pressure on illumi-
nated bodies.5 In the 1800s, Maxwell predicted that light was
an electromagnetic wave,6 which was confirmed by the first
demonstration of a radiation force originating from thermal light
sources by Lebedev7,8 and Nichols and Hull9 in 1901. We now
know that light beams can be considered as a large collection
of photons, each carrying a quantized amount of momentum,
which can be transferred to matter. However, as derived by
Poynting in 1906, the radiation pressure is so minute that it only
affects small bodies.10 Shortly afterward, Mie11 and Debye12 pro-
posed exact physical models to calculate scattering force and

radiation pressure of light in 1908 and 1909, respectively. At
that stage, no one could imagine any practical value of radiation
pressure with it being too weak to overcome frictional forces
in most circumstances. For a considerable time, researchers
focused their attention on the use of radiation pressure in space,
e.g., solar sail propulsion systems,13 due to the absence of ap-
preciable friction in space.

This situation did not change significantly until the invention
of the laser in 1960. In the years following this discovery,
Ashkin demonstrated,14 for the first time, laser trapping of
micrometer-sized dielectric particles with two counterpropagat-
ing beams. To get stable three-dimensional (3D) confinement of
particles, the scheme of two weakly focused beams with oppos-
ing radiation pressure was adopted. Optical trapping underwent
a revolution after Ashkin et al.15 found that even a single, tightly
focused laser beam can form a 3D stable optical trap—optical
tweezers. Since then, the broad field of optical manipulation or
so-called “micromanipulation” has found a tremendous range of
applications in many fields, such as biomedicine,16–18 physics,19–21

and chemistry,22 and has been noted in three Nobel Prizes in
physics: in 1997, for the development of methods to laser
cooling and trapping atoms; in 2001, for the achievement of
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Bose–Einstein condensation; and in 2018, for optical tweezers
and their application to biological systems.

It is noted that although the annular (high-order LG) beam
had been used to study the self-focusing and self-trapping of
a laser beam in artificial Kerr media in 1981,23,24 the fundamental
(or TEM00) transverse Gaussian mode of a laser beam was
exclusively used for optical trapping experiments in the early
decades of laser development. It is only in the last two decades
that structured light beams have been adopted widely in optical
tweezers. Structured light beams have added new dimensions
and functionalities to optical manipulation, as well as provided
new insights into light–matter interactions, where trapped par-
ticles can act as probes of structured light fields. Optical trapping
and structured beams, therefore, help each other understand and
improve these two important areas. Structured light beams can
be of two distinct forms, either scalar or vector. In the scalar
form, a structured light beam can be tailored by its amplitude
and phase while polarization is only modified in the vectorial
form of the beam. Structured light beams have been widely used
in optical manipulation, due to their unique properties, such as
optical vortices carrying orbital angular momentum25 (OAM)
and propagation invariant beams.26

Undoubtedly, the ability to tailor the optical properties of a
trapping beam is crucial in the development of novel optical
trapping techniques. Thus far, structured light beams with cus-
tomized phase and amplitude have been successfully applied to
drive the optical transport of particles in 3D trajectories by ex-
erting optical forces arising from high intensity and phase gra-
dients. Recently, there are several excellent review articles on
this topic,27–33 including optical pulling force,28 optical transport
of small particles,29 optomechanics with levitated particles,30

acoustic and optical trapping for biomedical research,31 and
so on.32 More recently, advanced optical manipulation using
structured light was reviewed,33 which focused on the manipu-
lation of transparent dielectric particles. In this paper, we review
the breadth of structured beams and discuss the recent advances
in optical manipulation employing structured beams, notably for
both scalar and vectorial forms. We provide an overview of
seminal contributions that have changed the landscape of optical
tweezers, with an extensive reference list. This emerging field is

being continuously and rapidly reshaped by new approaches,
and we hope this paper will appeal to a broad audience with
an interest in optical manipulation techniques. Our aim is to
offer an up-to-date status of the field of optical manipulation
with structured light.

2 Principle of Optical Tweezers
Optical tweezers are a powerful technique to hold and move mi-
croscopic particles or biological specimens with a single tightly
focused laser beam, akin to normal tweezers.15 Here, we briefly
describe the principle of optical tweezers. A more detailed dis-
cussion can be found in Refs. 2, 21, and 34–39 and references
therein.

2.1 Optical Gradient and Scattering Forces

Depending on the relative size of spherical particles to the laser
wavelength, optical forces can be described in three regimes:
the Rayleigh regime,40 the intermediate regime,41 and the ray
optics regime.42 The size parameter of the particle ξ is defined
as ξ ¼ kma, where km ¼ 2πnm∕λ0, λ0 is the wavelength of the
trapping beam in vacuum, and a is the radius of the spherical
particle. The refractive indices of the particle and the surround-
ing medium are np and nm, respectively. When ξ ≫ 1, it is in the
ray optics regime where the force can be described by a ray op-
tics model. When ξ ≪ 1 and ξ · np∕nm ≪ 1, it corresponds to
the Rayleigh regime where the particle can be approximated as
a dipole. For particles of size between the above two, this is the
intermediate regime where the Lorenz–Mie theory can be used
to investigate the optical force.

First, we use the simple ray optics model to explain how op-
tical tweezers work. Figure 1(a) shows a laser beam with two
light rays (white arrows a and b) passing through a dielectric
spherical particle located off-axis of the laser beam. The light
rays will change their propagation directions due to the refrac-
tion, resulting in a change in their momentum. As shown in
Fig. 1(a), the central portion of the beam with higher intensity
(indicated by a thick arrow a) is refracted to the left, which
means a change in the laser’s momentum to the left. Based
on the conservation of momentum at the particle boundary,

Fig. 1 Schematic diagram of optical tweezers: (a) when the particle is away from the center of the
beam focus, (b) when the particle is slightly above the center of the beam focus, and (c) net
force acting on the dielectric sphere. F a and F b are the forces produced by the refracted rays
a and b, respectively. F grad and F scat denote the gradient force and scattering force, respectively.
GB, Gaussian beam; MO, microscope objective.

Yang et al.: Optical trapping with structured light: a review

Advanced Photonics 034001-2 May∕Jun 2021 • Vol. 3(3)



the particle will feel a momentum kick to the right and therefore
has a force Fa toward the center of the beam (dotted line).
Analogously, the light ray b with lower intensity will change
its momentum to the right and exert an optical force Fb on the
particle away from the beam center. Since the light ray repre-
sented by a is much stronger than the ray represented by b,
the net force will push the particle to the right. Conversely,
if the particle is located on the right side of the beam axis,
the optical force will push it to the left. As such, the light field
intensity gradient always causes a gradient force (Fgrad) on the
particle toward the maximum intensity of the beam. Besides, the
rays reflected from the particle surface can produce forward
scattering forces (Fscat) along the beam propagation direction.
Figure 1(b) shows the longitudinal gradient force pushing the
particle down toward the focal plane, and vice versa, in a highly
focused laser beam. Therefore, the net force pushes the particle
to the focus of the beam, as shown in Fig. 1(c). In the case of
Fgrad ≫ Fscat, a stable 3D trap can be formed in a tightly focused
laser beam spot.

In the Rayleigh regime, ray optics are not applicable to ex-
plain the optical forces, as the particle size is smaller than the
wavelength of light. Here, the particle needs to be considered as
a point electric dipole, and the optical forces can be written as42

hFi ¼ 1

4
ReðαpÞ∇jEj2 þ

σðαpÞ
2c

ReðE ×H�Þ þ σðαpÞc∇

×

�
ϵ0
4ωi

E × E�
�
; (1)

where αp is the polarizability of the particle, and E, H are the
electric field and magnetic field, respectively. σðαpÞ denotes the
total particle cross-section. The first term in Eq. (1) indicates
the gradient force (Fgrad), and the last two terms represent the
scattering force (Fscat). The second term in Eq. (1) is normally
called the scattering force, and the third term is the so-called
spin curl force.42

Equation (1) indicates that each of these three optical forces
on a particle depends on the polarizability, which can be ex-
pressed as42

αp ¼ α0
1 − iα0k3∕6πϵm

; (2)

where α0 ¼ 4πnm2r3ϵ0ðη
2−1
η2þ2

Þ is the Clausius–Mossotti relation,
r is the particle radius, and η ¼ np∕nm is the relative refractive
index of the particle to the surrounding medium. Therefore,
we can play with the polarizability to optimize the optical traps.
Then, the optical gradient force and optical scattering force can
be rewritten as2,43

Fgrad ¼ − 2πnmr3

c

�
η2 − 1

η2 þ 2

�
∇IðrÞ; (3)

and

Fscat ¼
8πnmk4r6

3c

�
η2 − 1

η2 þ 2

�
2

IðrÞẑ; (4)

where c is the speed of light, ẑ is the unit vector along the z
direction, I is the intensity of light, and k is the wavenumber.

Both the ray optics and the dipole theory are powerful tools to
study the optical forces in their respective size regimes, which
have all given good physical pictures of the trapping mechanism.
However, particles with their size lying between these two re-
gimes make these approaches no longer valid. Instead, the
Lorenz–Mie theory can be used to calculate the optical forces
for such particle sizes, which are the exact solutions of the
Helmholtz equations.41,44 If the particles are not spherical, or
the incident beam is not a plane wave, the generalized Lorenz–
Mie theory can be used.45 There are also many other fully
numerical methods to calculate the optical force, such as fi-
nite-difference time-domain (FDTD) and finite element method.
For instance, the FDTD analysis allows the numerical simulation
of the scattered light field over an arbitrary particle. The optical
force would be the surface integral of the Maxwell stress tensor.
It should be noted that nondielectric materials, e.g., metals, semi-
conductors, and nonspherical particles, require different ap-
proaches. Proper choice of the force evaluation method relies
on particle size, geometry, and the structure of the light field.45,46

A conventional optical tweezers system is schematically
shown in Fig. 2. First, a collimated laser beam is expanded to
overfill the back aperture of a microscope objective. A dichroic
mirror (DM1) reflects the laser beam to the high numerical
aperture (NA) objective lens, which focuses the beam to a
tightly focused diffraction limited spot inside a sample chamber
for trapping. To image trapped particles on a CCD camera
through DM1, an LED white light source is typically used to
illuminate the sample. A condenser lens collects forward scat-
tered light from the trapped particles and projects an image onto

Fig. 2 Experimental configuration of conventional optical tweez-
ers. A simple telescope is used to expand the laser beam to over-
fill the back aperture of the objective. The expanded laser beam,
reflected by a dichroic mirror (DM1), is coupled into the objective.
The laser beam is focused by the objective and forms an optical
trap. The QPD is placed in a conjugate plane of the condenser, to
collect the forward scattered light that is reflected by the dichroic
mirror (DM2). The trapped particles are imaged with a CCD cam-
era. The lateral (x ; y ) position of the particle can be measured by
the normalized output voltage signals from the four quadrants,

namely, x ¼ ðAþDÞ−ðBþCÞ
AþBþCþD and y ¼ ðAþBÞ−ðCþDÞ

AþBþCþD .
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a quadrant photodetector (QPD) using back focal plane
interferometry.34 The balanced photodetection provided by the
QPD allows the precise measurement of the motion of the
trapped particles. The axial position z can be measured by
the sum of the intensity of the four quadrants.34

2.2 Langevin Equation

The motion of a Brownian particle in a fluid can be described
by the Langevin equation.47 In the overdamped case, where
particles are immersed in a viscous medium, e.g., water, the
one-dimensional motion (x direction) of an optically trapped
Brownian particle will be described by the equation

Γ0 _x ¼ −κ0xþ Fth; (5)

where the thermal random force Fth drives the Brownian motion
through collisions with surrounding molecules of the fluid, and
Γ0 ¼ 6πηa is the Stokes drag coefficient (η is the viscosity of
the fluid, and a is the radius of the particle). The trap stiffness
κ0 ¼ mΩ2

0, wherem is the mass of the particle, and ω0 is the trap
frequency, determines the magnitude of the optical restoring
force depending on its position relative to the trap center. For
a silica particle of radius a ¼ 1 μm (m ≈ 1 × 10−14 kg) in water
at room temperature, the resonant frequency of the harmonic
oscillator is 103 ≤ 1∕ð2πÞ ffiffiffiffiffiffiffiffiffiffiffi

κ0∕m
p

≤ 104 Hz for typical stiff-
nesses in the range of 0.5 ≤ κ0 ≤ 50 pN∕μm.

The power spectral density (PSD) of the particle’s motion
can be used to characterize the trap. At equilibrium, the PSD
is Lorentzian.48 For the particle’s x displacement,

SxðfÞ ¼
4Γ0kBT∕κ20
1þ f2∕f2c

; (6)

where fc ¼ κ0∕ð2πΓ0Þ is the corner or roll-off frequency that
verifies the trap stiffness. The integral of the PSD in units of
m∕

ffiffiffiffiffiffi
Hz

p
yields the position variance or the mean square dis-

placement (MSD) of the particle, which verifies the equilibrium
temperature of the particle:Z

∞

0

SxðfÞdf ¼ hx2i ¼ kBT
κ0

: (7)

The position variance hx2i directly measured by a CCD or
a QPD (see Sec. 2.1) can also verify the trap stiffness, which
benchmarks the PSD method.

2.3 Optical Torques for Rotation

Rotation of micro- and nano-objects, caused by the transfer of
angular momentum from light beams, is of great interest due to
its potential applications in optically driven micromachines,
motors, actuators, or biological specimen. A beam of circularly
polarized light carries spin angular momentum (SAM), which
was derived by Poynting49 in the early 1900s. The first exper-
imental observation of SAM was performed by Beth50 in 1936.
In this experiment, he observed a mechanical torque on a double
refracting slab due to a change in the circular polarization based
on the conservation of angular momentum. It is now well under-
stood that SAM of �ℏ per photon is associated with the circular
polarization of light, where the sign depends on its handedness.
SAM of light has been used for rotation of both elongated,

birefringent, and absorbing particles as well as particle cluster
in optical tweezers.34 Notably, with birefringent particles,51 a
maximal torque efficiency of 2ℏ per photon can be achieved,
contrary to the 0.05ℏ per photon achieved with elongated par-
ticles. In addition, optically trapped micron-sized birefringent
particles were rotated by a circularly polarized beam at rotating
rates as high as 350 Hz in water39 and 10 MHz in vacuum.40

Crucially, in recent time, it was demonstrated that SAM can also
be used for the selective 3D trapping of chiral micro- and
nanoparticles.52,53 It was shown that under appropriate condi-
tions, a light beam with SAM can induce nonrestoring or
restoring forces on chiral microparticles.52 Similar results have
been also reported on the interaction of chiral nanoparticles with
chiral optical fields.53

In 1992, Allen et al.25 introduced the concept of a light beam
possessing OAM, which is in addition to any SAM and char-
acterized by an azimuthally varying phase of expðilφÞ, where
l is an integer value, termed the topological charge, and φ is the
azimuthal angle. The first experimental demonstration of OAM
transfer from light to matter, in the context of optical tweezers,
was performed by the group of Rubinsztein–Dunlop,54,55 who
demonstrated the optically induced rotation of absorptive par-
ticles. This was followed by the demonstration of the simulta-
neous transfer of both SAM and OAM to the same absorptive
particles with circularly polarized LGl

0 modes.56 In these experi-
ments, the rotation rate was shown to be proportional to the
sum of SAM and OAM, i.e., the total angular momentum.57

Other pioneering experiments include the transfer of SAM and
OAM to a birefringent particle, which causes the particle to spin
about its own axis as well as to rotate about the beam axis,58,59

as shown in Fig. 3. While these previous demonstrations were
performed with particles confined in two-dimensions, with the
particle being pushed against a microscope slide, a key experi-
ment that demonstrated the transfer of SAM and OAM to
particles in 3D was performed by Simpson et al.60 Besides
the high-index particles, the 3D optical trapping of low-index

Fig. 3 Optical trapping of birefringent microparticles that show
the transfer of OAM and SAM. (a) The trapped particle is spinning
counterclockwise about its own axis (left column) and orbiting
clockwise about the beam’s axis (right column) separately.
Adapted from Ref. 58. (b) The particle rotates around its own axis
(left column) and the beam’s axis (right column) simultaneously.
Adapted from Ref. 59.
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particles has been studied as well,61,62 and it was shown that the
low-index particles can be trapped stably on the axis and slightly
above the focal plane of a strongly focused optical vortex beam.

3 Overview of Structured Light Beams
Light is an electromagnetic wave; as such, it can be character-
ized by its wavelength (color), amplitude, and phase or polari-
zation, the later associated with the direction of oscillation of the
electromagnetic field in space, transverse to the direction of
propagation. For unpolarized light, the direction of oscillation
is random. On the contrary, for polarized light, this can take
distinctive forms including linear, circular, or elliptical, which
are the preferred configurations for beam shaping. In what
follows, we will restrict our review to the case of polarized light,
first discussing the case of homogeneous polarization (scalar
fields), followed by the nonhomogeneous case (vector beams).
Inevitably, any discussion about structured light fields involves
the Helmholtz equation, either in its exact or paraxial forms.
As such, we will start our discussion by reviewing some of the
most relevant solutions to the Helmholtz equation that have
played a crucial role in the development of optical tweezers with
structured light as we know them today.

3.1 Laguerre–Gaussian Beams

Laguerre–Gaussian (LG) modes are a set of solutions to the par-
axial wave equation in cylindrical coordinates. Their normalized
transverse profile can be defined as25

LGl
pðρ;φ; zÞ ¼

ω0

ωðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p!

πðjlj þ pÞ!

s � ffiffiffi
2

p
ρ

ωðzÞ
�jlj

Ljlj
p

�
2

�
ρ

ωðzÞ
�

2
�

× exp½ið2pþ jlj þ 1ÞξðzÞ�

× exp

�
−
�

ρ

ωðzÞ
�

2
�
exp

�
− ikρ2

2RðzÞ
�
expðilφÞ;

(8)

where Ljlj
p (x) is the associated Laguerre polynomials with

l ∈ Z and p ∈ N as the azimuthal and radial indices, respec-
tively. A set of the parameters ξðzÞ, ωðzÞ, and RðzÞ is defined
as ωðzÞ ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz∕zRÞ2

p
, RðzÞ ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz∕zRÞ2

p
, and

ξðzÞ ¼ arctanðz∕zRÞ, respectively. Here, zR is the Rayleigh
range, and ω0 is the beam waist. Importantly, LG beams carry
OAM lℏ per photon, associated with the phase term expðilϕÞ.
This phase term results in a spiral azimuthal phase that creates

an inclined wavefront. The Poynting vector has, therefore, a
nonzero azimuthal component that is at the origin of the angular
momentum. Figure 4 shows four examples of the transverse
intensity profiles of LG modes.

3.2 Bessel Beams

Another set of solutions to the Helmholtz equation in free space,
when solved in cylindrical coordinates ðρ;φ; zÞ, is the Bessel
modes,63–65

Bðρ;φ; zÞ ¼ E0JlðktρÞ expðikzzÞ expðlφÞ; (9)

where JlðxÞ represents the l’th order Bessel polynomial, and
l ∈ Z is associated with OAM lℏ per photon carried by the
beam. Moreover, kt and kz are the transverse and longitudinal
components of the wave vector k, respectively, obeying the re-
lations jkj ¼ k ¼ 2π∕λ and jkj2 ¼ k2t þ k2z .

A more intuitive way of describing a Bessel beam is by con-
sidering these as the result of a superposition of plane waves
propagating on a cone, where each of them undergoes identical
phase shifts, kzΔz over a distance Δz. This interpretation can be
observed in the angular spectrum of the Bessel beam, which
takes the form of a ring or radius kr in the k-space. Therefore,
the optical Fourier transform of the Bessel beams is a ring, and,
vice versa, the optical Fourier transform of a ring will result in a
Bessel beam. Therefore, Bessel beams can be generated using
a ring-slit aperture.64 Using this method, Durnin63 produced a
Bessel beam experimentally for the first time. Figure 5 shows
this concept schematically; in Fig. 5(a), we show the transverse
intensity profiles of a Bessel beam with topological charge
l ¼ 0 and its Fourier transform, while in Fig. 5(b) we show that
of a Bessel beam of topological charge l ¼ 1 along with its
Fourier transform.

Two of the most prominent properties of Bessel modes are,
on one hand, their tendency to maintain an invariant intensity
profile, namely, IBðρ;φ; z ≥ 0Þ ¼ IBðρ;φ; 0Þ and, on the other,
their tendency to recover its original form when an opaque
obstruction is placed in its path.64 Such a property can be
explained by invoking again the plane waves propagating on
a cone approach as detailed next. When the opaque object or
radius a is placed in the center of the Bessel beam, some of
the waves that create the beam are blocked by this object, creat-
ing a shadow region. Nonetheless, some other plane waves
can pass the object unaffected, which ultimately are the ones
that reconstruct the intensity profile of the beam after a certain
propagation distance.65,66 As mentioned earlier, Bessel beams

Fig. 4 Transverse intensity profiles of LG modes with (a) LG0
0, (b) LG

1
0, (c) LG

0
2, and (d) LG2

2. The
color denotes the normalized intensity distribution.
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can be generated by placing a slit aperture in front of a ring-slit
aperture; none the less, this is a very inefficient way since most
of incident beam’s intensity is blocked. A far more efficient
way to produce a Bessel beam is using an axicon.64 The on-axis
intensity is formed by conical wavevectors that propagate on the
surface of a cone.

As we will discuss later, the zeroth-order Bessel beam has
demonstrated its great relevance in optical trapping for the study
of multiparticle arrangements along the beam axis.67,68 Since
Eq. (9) shows that these modes have infinitely extending side-
lobes and carry an infinite amount of energy, their experimental
realization is approximated by adding a Gaussian envelope.
These modes are known as Bessel–Gauss modes, which at
z ¼ 0 take the form69,70

Bðρ;φ; 0Þ ¼ JlðktρÞ exp
�
−
�

ρ

ω0

�
2
�
expð−ilφÞ: (10)

3.3 Perfect Vortex Beams

The concept of the “perfect vortex beam” was proposed by
Ostrovsky et al.,71 whose intensity profile is independent of its
topological charge. Its complex amplitude at a given propaga-
tion distance can be expressed as71

Vlðρ; θÞ ¼ exp

�
− ρ − ρ0

Δρ2

�
eilθ; (11)

where ρ0 is the radius of the bright ring, Δρ is the width of the
ring, and, in general, Δρ ≪ ρ0. Contrary to LG modes, in which

the radius of the ring-like transverse intensity profile scales up
with the topological charge, in perfect vortex modes, it remains
constant. Even so, recent reports suggest that the width of such
modes experiences a small scaling with the topological charge.72

This is shown in Fig. 6, where the transverse intensity profiles of
a set of perfect vortex beams with topological charges l ¼ 1, 4,
10, and 15 are shown. Vaity and Rusch73 pointed out that a
perfect vortex beam is actually a Fourier transform of a Bessel
beam, and it can be generated by employing a phase hologram
whose transmittance is the phase of a Bessel beam.71–74 It is
worth noting that although the concept of “perfect vortex beam”
was proposed in 2013, such a beam had been introduced and
used for 3D optical trapping and transport of particles by
Roichman and Grier,75 Roichman et al.76 had pointed out that
the radius of this 3D ring trap is independent of the topological
charge, and the first experimental demonstration of optical trap-
ping using the “perfect vortex beam” has been reported under
the name holographic ring trap. The perfect vortex has been
used by the optical trapping community as a particular case of
the structured light beam to study the dynamics of driven par-
ticles in the form of optical matter.77–80

3.4 Mathieu–Gauss Beams

Another interesting set of vector modes is the Mathieu–Gauss
beams, which are obtained when the Helmholtz equation is
solved in elliptical cylindrical coordinates.59 In such coordi-
nates, defined by x ¼ f cosh ξ cos η, y ¼ f sinh ξ sin η, and
z ¼ z, where ξ ∈ ½0;∞Þ is the radial coordinate, and η ∈ ½0; 2πÞ
is the angular coordinate, the Helmholtz equation can be sepa-
rated into a longitudinal part and a transverse part. The former is

Fig. 5 Transverse intensity profiles of Bessel beams and its Fourier transform with (a) l ¼ 0 and
(b) l ¼ 1. The color denotes the normalized intensity distribution.

Fig. 6 Transverse intensity distribution of perfect vortex beams with topological charge l ¼ 1, 4,
10, and 15. Here, ρ0 is the radius of the ring-like intensity profile and Δρ its width. Notice that the
intensity profile remains constant as l increases. The color represents the normalized intensity
distribution.
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easily solved by having a solution of the form expð−ikzzÞ, and
the latter is found as a solution of the equation81,82

� ∂2

∂ξ2 þ
∂2

∂η2 þ
f2k2t
2

ðcosh 2ξ − cos 2ηÞ
�
uTðξ; ηÞ ¼ 0: (12)

Here, the semifocal distance is represented by f, given in
terms of the major and minor as f2 ¼ a2 − b2 a rand b,
and related to the eccentricity e as e ¼ f∕a. Further, the param-
eter kt is the transverse component of the wave vector k.
Equation (12) can be split into the radial and angular Mathieu
equations, using the well-known separation of variables tech-
nique to obtain the nondiffracting Mathieu beams:83

Me
mðξ; η; z; qÞ ¼ CmJemðξ; qÞcemðη; qÞ expðikzzÞ; (13)

Mo
mðξ; η; z; qÞ ¼ SmJomðξ; qÞsemðη; qÞ expðikzzÞ. (14)

In the above, Cm and Sm are normalization constants,
whereas Jem and Jom are the even and odd radial Mathieu
functions, respectively, and cem and sem are the even and
odd angular Mathieu functions. For even modes, the subindex
m ¼ 0; 2; 3;…, while for odd modes it takes the values m ¼
1; 2; 3; 4;…. Again, the nondiffracting Mathieu beams carry
an infinite amount of energy and cannot be realized experimen-
tally. Nonetheless, a finite-energy version can be realized using
a Gaussian envelope, which is known as the Mathieu–Gauss
beam. Such modes retain the nondiffracting properties of the
ideal Mathieu beams over a finite propagation distance. The
Mathieu–Gauss modes are described mathematically as83

MGe
mðξ̃; η̃; z; qÞ ¼ exp

�
− ik2t

2k
z
μ

�
Me

mðξ̃; η̃; z; qÞ

× exp

�
− r2

μω2
0

�
expðikzÞ

μ
; (15)

MGo
mðξ̃; η̃; z; qÞ ¼ exp

�
− ik2t

2k
z
μ

�
Mo

mðξ̃; η̃; z; qÞ

× exp

�
− r2

μω2
0

�
expðikzÞ

μ
: (16)

Using the new definitions, x ¼ foð1þ iz∕zRÞ cosh ξ̃ cos η̃
and y ¼ foð1þ iz∕zRÞ sinh ξ̃ sin η̃, where now f0 is the semi-
focal separation at z ¼ 0. The parameter μ is defined in terms of
the Rayleigh range zR ¼ kω2

0∕2 as, μ ¼ 1þ iz∕zR, where ω0 is
the waist radius of a Gaussian beam. Figure 7(a) shows the
transverse intensity distribution of a set of even, while Fig. 7(b)
shows those of odd Mathieu–Gauss beams, given by the
parameters z ¼ 0, kt ¼ 6, e ¼ 0.9, and f0 ¼ 0.9. Importantly,
Mathieu–Gauss beams are another class of “nondiffracting”
optical fields, which are a variant of superposition of uniform
conical waves, i.e., Bessel beams. Therefore, they have a similar
capability of self-reconstruction after an opaque finite ob-
struction.

3.5 Airy-Gaussian Beams

Another important solution to the paraxial wave equation is the
Airy beam, which is given in AiðxÞ,84,85

Aðsx; sy; ξÞ ¼ Ai

�
sx −

�
ξ

2

�
2
�
Ai

�
sy −

�
ξ

2

�
2
�

× exp

�
iξ
2

�
sx þ sy − ξ3

3

��
; (17)

where sx ¼ x∕x0 and sy ¼ y∕y0 are dimensionless coordinates
in the transverse plane and set by the scale parameters x0 and y0.
Moreover, ξ ¼ z∕ðkx20Þ represents a normalized propagation
distance. Similar to the Bessel modes, Airy beams exhibit
unique properties of self-acceleration, “nondiffraction,” and
self-reconstruction. Among these, its tendency to accelerate
in the transverse plane following a parabolic trajectory has

Fig. 7 Transverse intensity pattern of a truncated zeroth-order Mathieu beam with (a) even and
(b) odd modes. The color represents the normalized intensity distribution.
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attracted considerable interest [see Figs. 8(a) and 8(b)]. Since
Airy beams also carry an infinite amount of energy, its exper-
imental realization with finite-energy can be approximated by
Airy–Gaussian modes [see Figs. 8(c) and 8(d)] and given as

A0ðsx; sy; ξÞ ¼ Ai

�
sx −

�
ξ

2

�
2

þ ibξ

�
Ai

�
sy −

�
ξ

2

�
2

þ ibξ

�

× exp

�
bðsx þ syÞ − bξ2 þ ibξ2 − ξ3

6
þ iξðsx þ syÞ

2

�
; (18)

where b < 1 is a negative parameter that limits the energy of the
Airy beam. As a result, the nondiffracting property can only per-
sist for a finite distance. The inverse Fourier transform of A0 at
ξ ¼ 0 yields a product of a Gaussian beam and a cubic phase,84

F−1fA0ðsx; syÞg ∝ exp½−bðk2x þ k2yÞ� exp
�
iðk3x þ k3yÞ

3

�
; (19)

where kx and ky are the transverse components of the inverse
Fourier transform. Therefore, we can experimentally generate
an Airy beam by modulating a Gaussian beam with a cubic
phase in the Fourier domain.

3.6 Ince–Gaussian Beams

The Ince–Gaussian (IG) modes are another important family of
orthogonal solutions to the paraxial wave equation, which can
be described as86,87

IGe
p;mðr; ϵÞ ¼

Cω0

ωðzÞC
m
p ðiξ; ϵÞCm

p ðη; ϵÞ exp
� −r2
ω2ðzÞ

�

× exp

�
i

�
kzþ k2

2RðzÞ − ðpþ 1ÞξðzÞ
��

; (20)

IGo
p;mðr; ϵÞ ¼

Sω0

ωðzÞ S
m
p ðiξ; ϵÞSmp ðη; ϵÞ exp

� −r2
ω2ðzÞ

�

× exp

�
i

�
kzþ k2

2RðzÞ − ðpþ 1ÞξðzÞ
��

; (21)

where IGe
p;m and IGo

p;m represent the even and odd solutions
of order p and degree m, with C and S being normalization

constants, and Cm
p and Smp being even and odd Ince polynomials,

respectively. ϵ ¼ 2f20∕ω2
0 together with f0, ω0 are the scale

parameters related to the geometric size of the mode. We note
that IG modes are a continuous transition from LG to Hermite–
Gaussian modes. Figure 9 shows the intensity profiles of even
[Fig. 9(a)] and odd [Fig. 9(b)] IG modes for ϵ ¼ 2.

3.7 Helico–Conical Beams

Helico-conical (HC) beams, contrary to the above optical
modes, have radial phase dependence.88,89 The phase in HC
beams is unique, and it is given by a product of both the radial
and the azimuthal coordinates,66

ψðr;φÞ ¼ lφðK − r∕roÞ; (22)

where l is the topological charge, K is either 0 or 1, and ro is
a normalization constant in the radial coordinates. As a result
of this phase dependence, upon propagation, the optical field
exhibits a helical geometry with anomalies in both phase and
amplitude. Figure 10 shows the transverse intensity profiles
of the HC beam comparing experimental and simulation results.
Interestingly, these beams also exhibit a self-healing property,
as demonstrated recently.67

3.8 Vector Light Fields

In the previous sections, we considered a set of structured light
fields, in which the polarization distribution in the transverse
plane was homogeneous. Here, we will now look into a more
general class of light fields with spatially inhomogeneous
polarization, commonly known as vector beams, which arise
naturally as solutions to the vectorial Helmholtz equation.90,91

These modes are commonly regarded as nonseparable super-
positions of spatial modes and polarization,92

UðrÞ ¼ u1ðrÞeiδ1 êR þ u2ðrÞeiδ2 êL; (23)

where the spatial degree of freedom is represented by the
orthogonal functions u1ðrÞ and u2ðrÞ, and the polarization de-
gree of freedom is represented by the orthogonal unitary vectors
êR and êL in the circular polarization basis. Moreover, the
parameters δ1 and δ2 are intermodal phases that introduce a
phase delay between both polarization components. Note that
the spatial degree of freedom spans an infinite space, and the

Fig. 8 Airy beam profiles. (a) Parabolic trajectory and (b) transverse intensity profile of an Airy
beam with infinite energy compared with those of a finite energy Airy beam in (c) and (d). The
color represents the normalized intensity distribution.
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number of combinations between the spatial and polarization
degrees of freedom is also infinite, giving rise to an infinite
set of vector modes. In principle, the spatial degree of freedom
can be any of the scalar modes described above. In the LGl

p
basis, Eq. (23) can be rewritten as91,92

UðrÞ ¼ 1ffiffiffi
2

p ðLGl1
p1
eiδ1 êR þ LG

l2
p2
eiδ2 êLÞ: (24)

In principle, l and p can take any integer value. Here, we will
consider the simplified case of l1 ¼ −l2 ¼ l, p1 ¼ p2 ¼ 0
and δ1 ¼ 0, δ2 ¼ δ, in which case, Eq. (24) can be expressed as

UðrÞ ¼ 1ffiffiffi
2

p ðLGl
0 êR þ LG−l

0 eiδêLÞ: (25)

By substituting l ¼ 1, the following set of orthogonal vector
modes can be obtained:

UTEðrÞ ¼
1ffiffiffi
2

p ðLG1
0êR þ LG−1

0 êLÞ; (26)

UTMðrÞ ¼
1ffiffiffi
2

p ðLG1
0êR − LG−1

0 êLÞ; (27)

Uo
HEðrÞ ¼

1ffiffiffi
2

p ðLG1
0êL þ LG−1

0 êRÞ; (28)

Ue
HEðrÞ ¼

1ffiffiffi
2

p ðLG1
0êL − LG−1

0 êRÞ: (29)

These cylindrical vector modes are commonly known as
Bell states, which are eigenmodes of both free-space and optical
fibers.93 Both the UTEðrÞ and UTMðrÞ modes with radial
[Fig. 11(a)] and azimuthal [Fig. 11(c)] polarizations have been
used in optical tweezers due to their unique transverse and
longitudinal force components in the trapping plane. This will
be discussed in more detail in a later section.

Fig. 9 Transverse intensity distribution of low-order (a) even and (b) odd IG modes with ϵ ¼ 2,
z ¼ 0, and ω0 ¼ 1 mm. The color represents the normalized intensity distribution.

Fig. 10 Intensity distribution of an HC beam from numerical simulations. (a), (c) The near-field
intensity distribution; (b), (d) the far-field. (a), (b) K ¼ 0; (c), (d) K ¼ 1. In all cases, l ¼ 50.
The color represents the normalized intensity distribution.
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4 Optical Trapping with Structured Light
Beams

Experimentally, the complex beams described above can be
generated in a wide variety of ways, which include interferomet-
ric arrays,94–96 glass cones,97,98 liquid crystal wave plates,99,100

metamaterials,101 spatial light modulators (SLMs),102–105 and,
in recent time, digital micromirror devices (DMDs).106–108

Noteworthily, SLMs enable the generation of complex 2D
and 3D shaped light beam patterns, which have significantly
advanced the configurable optical trapping of particles. Since
these devices are typically utilized in the Fourier plane of an
optical system, optical trapping systems using holographically
generated light beams are known as holographic optical tweez-
ers (HOTs). In this section, we overview the use of complex
light fields in optical tweezers.

4.1 Optical Trapping with Propagation Invariant Beams

In this section, we will discuss some of the key demonstrations
of HOTs within the domain of single optical traps.

4.1.1 Optical tweezers with Laguerre–Gaussian beams

As discussed in Sec. 2.2, the LG beam is one of the most
common beams used for optical trapping. Since the high-order
LG beams can carry OAM, which can be used to achieve the
orbital rotation of particles. Pioneering experiments demon-
strated a full 3D rotational control of microspheres and bio-
logical specimens using LGl

0 modes.109,110 The LGl
0 modes were

interferometrically combined with a reference LG0
0 mode

(Gaussian mode) to produce a spiral structure. While the phase
profile of the LG0

0 mode can be considered to be flat (spherical
more precisely), the LGl

0 modes are featured with a more intri-
cate structure, resembling a helical staircase. Hence, the inter-
ference of an LGl

0 mode with a Gaussian mode produces a new
structured azimuthal phase with an intensity pattern containing
l spiral arms. Importantly, the spiral structure can be rotated
in any direction and at arbitrary rates by introducing phase
delays in one of the arms of the interferometer. In this way,
particles trapped in the bright lobes of the interference pattern
can be rotated in any direction around the optical axis of the
beam. By simply changing the azimuthal index l, it is possible
to manipulate objects with different shapes or to trap many ob-
jects simultaneously.109 Importantly, this pioneering experiment
showed for the first time the potential application for the control

of biological organisms, in which case, the authors trapped and
rotated a Chinese hamster chromosome.

Another experiment110 was performed using a collinear inter-
ferometric superposition of LGl

0 modes, with opposite topologi-
cal charges l and −l, to produce the intensity patterns with
petal-like structures of 2l bright lobes. Similarly, the structure
could be rotated by introducing phase delays in one of the arms.
Figures 12(a) and 12(b) show 3D manipulation and rotation of
particles trapped in intensity patterns produced by the superpo-
sition of LGl

0 and LG−l
0 . Figure 12(c) shows the rotation of the

3D microstructure of particles. Finally, Fig. 12(d) shows a sche-
matic representation of the 3D structures that were created in
this experiment by stacking more particles on each bright spot.

More recently, LG beams were used to explore the manipu-
lation of single or multiple silicon nanowires.111 It demonstrated
the orbiting of silicon nanowires around the optical vortex
aligned parallel to the propagation axis of the beams.
Figure 13(a) shows the position of the particles as a function
of time, evincing a clear orbital motion; the right inset shows
a schematic representation of the trapped nanowire overlapped
with the intensity pattern of the trapping beam. In addition,
the author demonstrated that silicon nanorods oriented perpen-
dicular to the propagation axis of the beam can be used as light-
driven nanorotors, resulting from the transfer of SAM.

It is noted that the small particles can be trapped in the bright
ring of LG vortex beams, while if the size of the particle is com-
parable to the waist size of the incident structured beam, the
particle is predicted to be trapped at the center of the beam with
the proper choice of the beam parameters such as vortex charge
and polarization.112 Moreover, a very recent study showed that
when the LG beam is strongly focused, the rotation direction of
the trapped particles might be in the opposite direction,113 which
is much different for the case of paraxial LG beams. Figure 14
shows the anomalous motion of a particle trapped in a strongly
focused LG beam. From Fig. 14(c), we can see that in the region
β, the direction of the optical torque is opposite that of OAM of
the LG beam.

The trapping geometry and particle shape can have a great
influence on the angular momentum transfer. Jesacher et al.114

reported an observation of particles orbiting in a reverse
direction with respect to the OAM of the incident light field.
Irregular-shaped glass microparticles were trapped at an air–
water interface with an LG mode of topological charge
l ¼ �30 based on the holographic tweezers setup. Figure 15
shows the rotation of a polystyrene bead and a glass sliver

Fig. 11 Intensity and polarization distribution of the fundamental cylindrical vector beams.
(a) Radial, (b) hybrid odd, (c) azimuthal, and (d) hybrid even modes. The color represents the
normalized intensity distribution, while the lines are associated with the polarization orientation
of the electric field.
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depending on the sign of the topological charge. Intriguingly,
only the polystyrene bead changes its direction of rotation by
inverting the topological charge.

A simple ray optics model for a wedge-shaped glass particle
placed at the air–water interface indicates that reflection and
refraction of light rays on the particle surfaces can cause the

asymmetric object to move against the direction of the OAM
of the incident light field. Importantly, this demonstration
suggests that the shape-anisotropy of the particles could be
optimized for optical momentum transfer and thus for efficient
optical nanotransport techniques. Other demonstrations of neg-
ative optical torques include reversed orbiting and spinning with

Fig. 13 Optical trapping and rotations in counterpropagating circularly polarized LG beams of
silicon nanowires aligned (a) parallel and (b) perpendicular to the beam propagation axis, where
orbiting and orbiting-reorientation are shown, respectively. The simultaneous spinning and orbiting
of a shorter nanowire is shown in (c) and (d). Adapted from Ref. 111.

Fig. 12 Optical trapping and control of 3D structures using superpositions of LGl
0 and LG−l

0 as the
trapping beam. (a) Two microspheres trapped at the two bright spots created by the superposition
of the modes LG1

0 and LG−1
0 . (b) Trapping and release of eight microspheres trapped along the

beam’s propagation axis by the intensity pattern generated by superposed modes of LG2
0 and

LG−2
0 , as schematically shown in (d). (c) Rotation of the eight-microsphere cubic structure.

(e) Schematic representation of the generation of 3D structures containing a larger number of
microspheres. Adapted from Ref. 110.

Yang et al.: Optical trapping with structured light: a review

Advanced Photonics 034001-11 May∕Jun 2021 • Vol. 3(3)



a Bessel light beam,115 elliptically polarized beams,116 and cir-
cularly polarized Gaussian light beams.117

4.1.2 Optical trapping with Bessel–Gaussian beams

With the nondiffracting property, Bessel beams have great ad-
vantages for optical manipulation. The first experiment using
zeroth-order Bessel beams demonstrated the trapping of multi-
ple particles along the beam axis, as well as the transport of
these particles over long distances (∼5 mm).26 Subsequent
experiments68 showed the manipulation of microparticles in
multiple optical planes along the beam axis, using two sample

cells (100 μm in thickness) separated by 3 mm, as shown in
Fig. 16(a). Crucially, even though the Bessel–Gaussian beam
is distorted by the particles in the first cell, its self-healing prop-
erties allow recovery of its original intensity profile after a cer-
tain propagation distance, which coincides with the separation
distance of the cells. Hence, the beam is capable of trapping
again microparticles in its multiple rings inside the second cell.
We note that in this experiment, the radius and nondiffracting
propagation distance of the Bessel–Gaussian beam are 5 μm
and ∼4 mm, respectively. It is worth mentioning that such a
beam can also align multiple rods along the beam propagation
direction.68 Along the same line, counterpropagating Bessel
beams have also been used to manipulate submicron particles
in three dimensions. This optical conveyor belt is based on the
generation of a standing wave, created from the on-axis super-
position of two counterpropagating Bessel beams, which allows
us to confine and deliver over long distances (hundreds of
micrometers) and with high precision multiple submicron par-
ticles [Fig. 16(b)]. The delivering of particles was achieved by
dynamically changing the phase of one of the beams, which in
turn causes the whole structure of nodes and antinodes to shift
along the optical axis of the standing wave.118 In 2008, a prac-
tical application was demonstrated, where microspheres trapped
with Bessel beams served as objective lenses to focus a laser
onto a surface to enable near-field direct writing with nanometer
resolution.119 This technique was used to demonstrate nano-
patterning of arbitrary patterns with dimensions in the order of
100 nm and positioning accuracy in the order of 40 nm.

Very recently, a superposition of multiple copropagating
Bessel beams, so-called frozen waves, was used to build stable
optical trapping as well.120 Besides demonstrating that such
beams possess greater optical trapping stabilities, the authors
also demonstrated their capabilities of trapping in multiple par-
allel planes along the propagation direction, as schematically
shown in Fig. 17(a). Here, to observe the motion along the
propagation direction, the authors implemented a digital propa-
gation, in which the observation plane is fixed, and different
propagation planes are simulated holographically by changing
the hologram that generates the frozen waves. An experimental
sequence of frames of the beam at different propagation planes
is shown in Figs. 17(a1)–17(d1) and 17(a2)–17(d2) for the case
on one and two trapped particles, respectively.

Fig. 14 Anomalous motion of a particle trapped in strongly
focused high-order LG beams. (a) The intensity profile of the
LG beam with topological charge 3. (b) The plot of the distribution
of the radiation force exerted on the trapped particle for different
center-of-mass radii. (c) The radial (blue line) and azimuthal (red
broken line) components of the radiation force for different radii of
the trapped particles. Adapted from Ref. 113.

Fig. 15 Rotation of a polystyrene bead and a glass sliver trapped with an LG mode of l ¼ �30.
(a) Sequential images of these particles showing their direction of rotation. (b) Angular velocity of
each particle with respect to the topological charge. Adapted from Ref. 114.
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If we replace the zeroth-order Bessel beams with higher-
order Bessel beams, namely, Bessel vortex beams, the situation
will change significantly. That is because the center of the
Bessel vortex beam has zero intensity, due to the phase singu-
larity on the axis. Therefore, the trapping of multiple transparent
particles in multiple rings of intensity maxima of higher-order
Bessel beams was experimentally demonstrated,70 and the rota-
tion of the trapped particles is observed as well. It is worth not-
ing that the optical trapping behavior is dependent on the size of
the particles.121 If the size of the particle is much smaller than the
radius of the vortex bright ring, the particle will be trapped in
the bright ring; meanwhile, the trapped particle will orbit along
the bright ring, as shown in Fig. 18(a). If the size of the particle
increases and is close to the radius of the vortex ring, then the
particle will be trapped stably, without rotation, at certain off-
axis positions of the inner bright ring, as shown in Fig. 18(b).
If the particle is large enough to cover the whole bright ring of
the vortex beam, then the particle will be trapped in the center of
the vortex beam, and the particle does not rotate [Fig. 18(c)].
As a comparison, Fig. 18(d) shows the optical trapping of a
silver nanowire with an LG vortex beam, and it was shown that
the nanowire rotates only if its length is longer than the size of
the bright ring of vortex beam.122

4.1.3 Optical trapping with perfect vortex beams

Optical manipulation using perfect vortex modes possessing an-
nular intensity profiles independent of topological charges has
been of great interest in recent years.123 The motion of trapped

Fig. 16 Optical trapping with Bessel beams. (a) Trapping of multiple particles at different optical
planes. Adapted from Ref. 68. (b) Trapping and delivering of two particles using a sliding Bessel
standing beam. Adapted from Ref. 118.

Fig. 17 (a) Schematic representation of optical trapping with
frozen waves in multiple parallel planes. Sequence of (a1)–(d1)
one and (a2)–(d2) two microparticles (orange circle) trapped
at different transverse planes along the propagation direction.
Adapted from Ref. 120.
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particles is determined by the gradient and scattering forces re-
sulting from the perfect vortex beam. The particles continuously
move along the annulus due to the scattering force from the
inclined wavefront, as shown in Figs. 19(a) and 19(b). As
the OAM density is well-defined in the perfect vortex beam,
a linear relationship between the rotation rate and the OAM
is guaranteed for both negative and positive topological charges,
as shown in Fig. 19(c). The experimental realization of perfect
vortex beams is rather challenging, as they tend to exhibit
azimuthal intensity variations due to optical aberrations. As a
result, the rotation of a single particle is difficult to maintain at
a constant velocity around the trap due to local intensity hot
spots. Nonetheless, with intensity profile correction techniques,
it is possible to eliminate these hot spots,123 in which a single
trapped particle can continuously move along the vortex ring,
as schematically illustrated in Fig. 19(d). However, the trapped
particle still exhibits a nonuniform angular velocity due to local
variations of the OAM density,124 as shown in Fig. 19(e). Based
on the linear dependence of the particle rotation rate upon the
OAM density, the angular velocity can be adjusted in situ by

correcting the local OAM density with a phase correction mask.
It is worth noting that experimentally the perfect vortex beam
can induce rotation of the trapped particle at a constant velocity
with integer topological charges, while fundamentally this can-
not be achieved with fractional topological charges.74

4.1.4 Optical trapping with Mathieu beams

Mathieu beams are a family of propagation invariant beams with
self-healing properties. Compared to Bessel–Gaussian beams,
they are especially well-suited for the 3D arrangement of
particles due to their rich variety of complex transverse mode
distributions.125 Notably, Mathieu beams allow us to trap and
orient elongated objects in the transverse x − y plane to the beam
(z) axis, which is not normally possible with single optical tweez-
ers. Figure 20 shows optical trapping of nonspherical particles
with a fourth order (m ¼ 4) even Mathieu beam [Figs. 20(a)–
20(c)], which was rotated within the x − y plane [Figs. 20(d)
and 20(e)]. Elongated particles (∼3 × 5 μm) were arranged with
their long axis in the transversal plane [Figs. 20(f) and 20(g)],
and their orientation depends on the beam orientation.

Fig. 18 Effect of the size of the trapped particle on optical trapping with vortex beams.
(a)–(c) Optical forces of a particle with different sizes compared to the radius of the bright rings
of Bessel vortex beams. The blue circle and blue dot denote the edge and the center of the trapped
particle. The cyan contour denotes the zero force azimuthal directions. The magenta lines re-
present the deterministic trajectory of a particle. (d) Illustration of a rotation of a single silver nano-
wire trapped by an LG vortex beam. (a)–(c) Adapted from Ref. 121. (d) Adapted from Ref. 122.
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We note that it is possible to assemble multiple particles in
the z direction because of the self-healing property of Mathieu
beams. Furthermore, Mathieu beams also offer superpositions
of even and odd modes, resulting in helical Mathieu beams that
provide continuous phase variations. Thus, these beams were
also used to investigate the transfer of OAM126 to particles in
optical micromanipulation.127

4.1.5 Optical trapping with Airy–Gaussian beams

One of the most prominent properties of Airy beams is their
ability to freely accelerate in the transverse plane, resulting
in a parabolic trajectory upon propagation. Exploiting this prop-
erty, Baumgartl et al. transported particles along parabolic
trajectories, as schematically represented in Fig. 21(a).128,129 An
Airy beam was shaped from a 25-mW argon-ion laser using
an SLM and focused down to a size of 10 μm into a chamber
containing an aqueous suspension of colloidal glass micro-
spheres. The optical gradient forces attracted particles toward
the main lobe of the Airy beam, where they were transported
along the parabolic trajectory due to radiation pressure. The
Airy beam shifted laterally over a distance of ∼10 μm after only
a propagation distance of 75 μm. Figures 21(b) and 21(c) show
experimental results of the so-called “snowblowing” effect.
The field of view was divided in four quadrants marked with

different colors to see this effect clearly. Figure 21(b) shows that
an Airy beam launched into the second (green) quadrant cleared
particles in this section by carrying them into the third (purple)
quadrant along the 3D parabolic trajectory. This process is
reversible if the orientation of the Airy beam is inverted, as
shown in Fig. 21(c). Recently, a circular Airy vortex beam has
attracted interest due to its autofocusing property,130,131 which is
a hollow beam carrying OAM, as shown in Fig. 21(d). Such
a beam carries OAM, which can be used to trap and rotate
particles as well, as shown in Fig. 21(e). Moreover, it is shown
that the rotational velocity of the trapped microparticles first
increases with the increasing topological charge and then de-
creases after it reaches a maximum.130

4.1.6 Optical trapping with Ince–Gaussian beams

As previously mentioned, IG modes appear as natural solutions
to the paraxial wave equation in elliptical coordinates (see the
previous section on IG modes). A rich variety of transverse
intensity profiles given by high-order assemblies of this family
of modes allow micromanipulation of particles at each bright
spot. Woerdemann et al.132 utilized these IG modes to create
3D structures of trapped microparticles. Figure 22 shows the
IG modes generated by an SLM (top row) and particles trapped
in the bright parts of these IG modes (bottom row). Notably,

Fig. 19 (a) A perfect vortex beam with l ¼ 25 and (b) the beam with the scattered light from a
single trapped particle. (c) Linear relationship between the particle rotation rate and the integer
topological charge. (d) Snapshot of a trapped particle rotating around the circumference of a
perfect vortex beam indicated by the red circle. (e) Angular velocity of the particle as a function
of its angular position. Adapted from Refs. 123 and 124.
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microbeads can be trapped in 3D according to the 3D structures
of these beam profiles.

4.1.7 Optical trapping with helico-conical beams

Another important class of OAM beams is the HC beams with
spiral phase and intensity profiles.88,89 A schematic representa-
tion of beam generation and its 3D beam profile upon propaga-
tion are shown in Fig. 23(a). With this unique beam property,
both linear momentum and OAM are to be transferred to
microparticles.133 In the experiment, 2-μm-diameter silica beads
are dispersed in water in a chamber with a thickness of 100 μm.
Figure 23(b) shows time-lapse images of a trapped bead moving
upward from the bottom along a spiral trajectory around the axis
of the HC beam (l ¼ 20).

4.2 Optical Trapping with Holographic Optical Traps

4.2.1 Holographic arrays of multiple optical traps in
two and three dimensions

As we have shown in previous sections, SLMs have provided
the ability to create 2D and 3D optical traps for guiding or trans-
porting microparticles. Nonetheless, most of the previously dis-
cussed techniques rely on the use of common light beams that
are solutions to the wave equation, except for HC light beams.
In what follows, we will discuss a more general class of optical
traps, which rely on arbitrary customized 2D and 3D light beams.

An immediate and almost obvious step forward to achieve
the simultaneous trapping of many particles is through the use
of galvo-scanning mirrors or acousto-optic beam deflectors,134

in which a single beam can be time-shared at multiple locations
to simultaneously trap micron-sized polymer spheres. This ap-
proach can be used in the study of the single molecule H-NS
protein, for example.134 An alternative approach to generate
arrays of optical traps relies on the use of diffractive optical
elements (DOEs),135 as shown in Fig. 24. The key idea in this
approach is based on the deflection of an input beam to a differ-
ent angle defined by period of a diffraction grating. Therefore,
the generation of multiple trapping focal spots can be achieved
by superimposing multiple diffraction gratings. A typical binary
version of the DOE pattern for a hexagonal tweezers array is
shown in Fig. 24(b). The trapped microspheres in the array
are shown in Fig. 24(c).

SLMs can facilitate this task by adding more flexibility and
new features to this field. Not only can the wavefront of the
incident beam be modulated to desired optical traps, but also
the wavefront distortion (aberration) and attenuation can be
corrected or compensated by SLMs.136–138 In addition, SLMs
enable dynamic and interactive control of holographic optical
traps (HOTs). Figure 24(d) schematically illustrates a typical
HOT setup that incorporates the use of an SLM.136,139 The phase
pattern for generating an array of 20 by 20 traps (bottom-right
inset with a zoom-in image for the trapped microspheres) is

Fig. 20 Optical trapping of nonspherical particles. (a) Mathieu beam with m ¼ 4. (b) 3D intensity
distribution. (c) Particles orientation within transversal intensity distribution. (d) Rotating hologram
and (e) corresponding Mathieu beam. (f) Time-lapse images of trapped particles depending on the
orientation of the Mathieu beam and (g) their corresponding schematics. Adapted from Ref. 125.
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shown on the bottom left inset. Importantly, such HOTs can be
brought to a third dimension for the simultaneous manipulation
of multiple particles in 3D, which is useful for creating, for
example, microcrystal structures. Proposed techniques can
create structures of several tens of microns capable of rotating
dynamically about arbitrary axis.137,140,141

A step forward in the generalization of customized light
shapes to manipulate microparticles consist of the computation
of the phase, in a reverse-engineered process, of the desired
light beam, which we briefly explain next. In essence, a 2D
phase distribution ΦinðrÞ of the beam wavefront is calculated
from the desired intensity pattern at the trapping plane.
Figure 24(a) shows the relationship of the electric field between
the input and the focal planes.135 The monochromatic plane
wave is modulated by a phase ΦinðrÞ at the input leading to

EinðrÞ ¼ AinðrÞ exp½ΦinðrÞ�, where the amplitude and imposed
phase are real-valued functions. The electric field at the focal
plane yields EfðρÞ ¼ AfðρÞ exp½ΦfðρÞ�, which constitutes a
Fourier transform pair with EinðrÞ and can be written as135

EfðρÞ ¼ k
2πf

eiθðρÞ
Z

d2rEinðrÞe−ikr·ρ∕f; (30)

where f represents the focal length of the lens and k ¼ 2π∕λ
the wavenumber. Since there is no analytical solution for the
phase distribution, usually an iterative algorithm, e.g., an adap-
tive-additive algorithm, is applied to search for an optimized
phase.135

So far, we have discussed the creation of static arrays of
optical traps using an SLM. In the following sections, we will

Fig. 21 Optical manipulation with Airy beams. (a) Schematic representation of a microparticle
being transported along a parabolic trajectory. Adapted from Ref. 128. Transporting particles
(b) from quadrant two (green) to quadrant three (purple) and (c) from quadrant three to quadrant
two. Adapted from Ref. 129. (d) The y − z plane intensity profile of a circular Airy vortex beam.
(e) Rotation of the trapped silica particles on the primary ring of circular Airy vortex beam for topo-
logical charge 12. The white and yellow circles denote the vortex ring position and the position of
a selected trapped particle at different time. Adapted from Ref. 130.
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discuss approaches for the creation of complex light fields for
micromanipulation.

4.2.2 Optical trapping with modulated optical beams

Optical trapping along arbitrary trajectories was first demon-
strated in 2003.142 The idea behind this technique is the fact that,
for the family of LG transverse modes, the mode profile and
radius of peak intensity vary with the topological charge l of
the beam:142

RðθÞ ¼ a
λ

NA

�
1þ 1

l0

dφðθÞ
dθ

�
; (31)

Rl ≈ aλ∕NAð1þ l∕l0Þ; (32)

where NA is the numerical aperture of the focusing lens, and
a and l0 are constants related to the radial amplitude profile
of the beam. It provides a way to tailor the radius of the vortex
beam via the function of θ. For example, Lissajous patterns can
be directly obtained with φðθÞ ¼ l½θ þ α sinðmθ þ βÞ�, where
the constants α and β are used to control the depth of modula-
tion. Figure 25(a) shows the intensity patterns for a constant α
and a varying m (top row) and a constant m and a varying α
(bottom row). Optical tweezers with beams generated in this
way can drive nanoparticles along with closed intricate circuits.

Fig. 23 Optical manipulation with HC beams. (a) Schematic representation of the setup required
for beam generation. (b) Time-lapse images of a microbead trapped and guided along with the
maximum intensity of the beam, as illustrated on the left. Adapted from Ref. 133.

Fig. 22 Micromanipulation with IG beams. The top row shows the transverse intensity patterns of
the beams, while the bottom row shows trapped microparticles with the corresponding beams.
(a) IGo

5;5 mode. (b) IGo
2;2 mode with four columns of particles stacked along its beam axis.

(c) IGo
4;2 mode where the four central petals close to each other show no stable traps. (d) IGe

14;14

mode with particles trapped at certain locations. Adapted from Ref. 132.
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Figure 25(b) shows two polystyrene nanospheres (400 nm in
radius) suspended in water are transported along with a modu-
lated optical vortex with l ¼ 60, m ¼ 3, and α ¼ 0.1, in which
each particle completes a cycle within 2 s. It is worth noting that
the optical forces driving the particles are larger when RðθÞ is
smaller, when the light is most intense.

Recently, a new class of optical tweezers along with 2D and
3D trajectories was demonstrated, driving particles based on
phase gradients of the light field. This method employs a tech-
nique to create light fields with an arbitrary (and programmable)
transverse phase profile ϕðrÞ. A particular case76 of such
a transverse phase gradient is the azimuthally varying phase

Fig. 24 Optical tweezer arrays using computer-generated holograms. (a) Schematic representa-
tion of the fields at the input hologram and output Fourier planes, where k is the wave vector.
(b) DOE (the black color represents a phase shift of π-rad) etched on a fused silica substrate
for a hexagonal array of traps. (c) 19 silica spheres (1-μm diameter) trapped in the hexagonal
array. Adapted from Ref. 135. (d) Typical experimental setup for optical tweezers using com-
puter-generated holograms. A telescope relays the plane of the diffraction grating to the input pupil
of the microscope objective. In this way, multiple beams generated by the diffraction grating can
create multiple optical traps. The bottom left inset shows an example of a phase grating capable of
generating an array of 20 by 20 optical traps. The bottom right inset shows the optical trapping of
multiple polystyrene spheres (800 nm in diameter) in water. Adapted from Ref. 136.

Fig. 25 Optical trapping with complex optical patterns. (a) Experimentally generated beam
patterns with different modes. (b) Two particles being guided along the trajectory shown by the
dotted line. Adapted from Ref. 142
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ϕðrÞ ¼ lφ. Similar phase profiles have been used in the field of
laser remote sensing to directly measure the velocity component
along the transverse plane.143–145 When trapped in a beam with a
phase gradient, particles can move along the beam. In the case of
linear phase gradient ϕðxÞ ¼ jqjx, where jqj ¼ 12 rad∕μm,
colloidal silica microspheres (1.53 μm in diameter) dispersed
in water were transported along with a transverse linear trap
of 5 μm in length at a speed of 2 μm∕s. The second case of
a parabolic gradient ϕðxÞ ¼ �ðqxÞ2 is more interesting.76

Figures 26(a1) and 26(b1) show that two colloidal spheres
were trapped with negative ϕðxÞ ¼ −ðqxÞ2 and positive
ϕðxÞ ¼ þðqxÞ2 parabolic phase profiles, respectively. In the
negative case, the particles were pushed toward the ends of

the linear trap, whereas in the positive case they are pulled to-
ward the center of the trap. Figures 26(a2) and 26(b2) show the
linear intensity profiles at the trapping plane. A cross-section of
the trapping beams in the x − z plane shows the phase gradient,
which originates from either light rays diverging or converging
toward the optical trapping plane, as shown in Figs. 26(a3)
and 26(b3).

4.2.3 Optical trapping with optical solenoids

In 2010, a new class of beams was demonstrated, the so-called
optical solenoid, which is nondiffracting solutions of the
Helmholtz equation in cylindrical coordinates.146 Perhaps the
most notable property of these beams is their 3D spiralling
intensity profiles, whose wavefronts carry an independent
helical pitch. Moreover, their radial intensity distribution
remains invariant in the spiralling frame of reference. These
beams are capable of trapping microparticles along with the
helical beam intensity profile and transporting them along the
spiral trajectory via a phase gradient. Mathematically, these
beams can be synthesized as a superposition of the m’th
Bessel beam as

uγ;lðr; zÞ ¼
Xjlj

m¼½l−γk�

l −m
γ2

JmðqmRÞ exp
�
iðl −mÞ

γ
z

�

× expðimθÞJmðqmrÞ; (33)

where q2m ¼ k2 − ðl −mÞ2∕γ2 and ½l − γk� represents the inte-
ger part of l − γk. Figure 27(a) shows the 3D intensity profile of
Iγ;lðr; zÞ ¼ juγ;lðr; zÞj2 for kR ¼ 10, θ ¼ 30 deg, and l ¼ 10.
To generate such an optical solenoid beam, the required holo-
gram was created on a phase-only liquid crystal SLM and
projected into a sample cell containing colloidal silica beads
(1.5 μm in diameter) immersed in water, through a 100× micro-
scope objective. The transmitted beam was reflected by a mirror
mounted on a translation stage and imaged onto a CCD camera.
Figure 27(b) shows the experimental 3D intensity profile of the
beam, where the radius of the helical trajectory transverse to
the beam axis was R ¼ 5 μm. Microspheres can be trapped
in the solenoid beam and transported along its helical path
[Fig. 27(c)]. Importantly, the direction of their motion upward

Fig. 26 Optical trapping with a parabolic phase gradient. Two
silica beads (1.5 μm in diameter) trapped in (a1) positive and
(b1) negative parabolic phase gradients and (a2), (b2) the
corresponding beam intensity profiles at the trapping plane.
A cross-section of the beams in the x − z plane, showing (a3)
the divergence and (b3) convergence of the phase gradient.
Adapted from Ref. 76.

Fig. 27 Optical manipulation with 3D solenoid beams propagating parallel to the z axis.
(a) Theoretical and (b) experimental profiles of the beam in 3D. (c) Experimental trajectories
of trapped particles transported downward (l ¼ þ30) or upward (l ¼ −30) along with the helical
intensity profile in the optical solenoid beam. Adapted from Ref. 146.
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or downward along the beam axis can be controlled by alternat-
ing the sign of the topological charge. The gray-scale image in
Fig. 27(c) was created by the superposition of six video frames
capturing the same microsphere at different time instances. This
experiment demonstrates that a suitable combination of phase-
and intensity-gradients can exert retrograde forces on micropar-
ticles, which can be transported against the beam propagation
direction.

4.2.4 Optical trapping and transporting of particles along
3D trajectories

The use of LGl
0 modes to orbit particles confines the motion of

the trapped particles to the plane perpendicular to the propaga-
tion direction moving around the annular intensity profile,
where the azimuthal phase variation drives the particles via scat-
tering forces. Therefore, the trajectory of trapped particles is
determined by the intensity and phase profiles of the beam, both
of which are always interlinked. Newer approaches proposed
advanced techniques, in which the intensity and phase profiles
of the beam are independent from each other. These allow the
creation of 3D parametrized curves (trajectories) of trapped par-
ticles in the form of R0ðsÞ ¼ ðx0ðsÞ; y0ðsÞ; z0ðsÞÞ as a function
of the arc length s.147 To achieve the movement of particles along
3D curves, a hologram that produces the 3D parametrized curve
at the focal plane is required,147

R0ðsÞ ¼ R

�
cos

�
s
R

�
cos β; sin

�
s
R

�
; cos

�
s
R

�
sin β

�
; (34)

where R is the radius of the curve projected on the x − y plane,
rotated by an angle β about the y axis with s ∈ ½0; 2πR�.
Figure 28(a) shows an experimental example of nine micro-
spheres (5.17 μm in diameter) trapped along the curve of radius
R ¼ 9 μm tilted at an angle β ¼ π∕4 rad. Figure 27(b) shows
the corresponding schematic representation in 3D. More com-
plex structures of light can be generated by the same principle.
For example, two knotted rings of light, tilted at opposite angles
β ¼ �π∕8, are shown in Fig. 28(c). Here, the radius of the
ring is R ¼ 12.9 μm, and their centers are separated by R∕2.
Figure 28(d) is an experimental demonstration showing that the
rings act as two 3D optical traps and are capable of organizing
colloidal silica spheres. Interestingly, the trapped spheres could
freely move between these knotted rings, which are schemati-
cally shown in Fig. 28(e).

More recently, alternative techniques have been proposed for
the generation of arbitrary 3D parametrized curves of the beam
with high intensity and independent control of the phase, also
known as freestyle optical traps.148–152 The main idea behind
the generation of a light beam that focuses into a parametric
curve of the form cðtÞ ¼ ðRðtÞ; uzðtÞÞ, with RðtÞ ¼ ðRðtÞ cos t;
RðtÞ sin tÞ, is to display on an SLM a hologram that generates
the polymorphic beam,151

Eðr0Þ ¼
Z

T

0

gðtÞ exp
�
− ik
2f2

uzðtÞr20
�
exp

�
ik
f
r0RðtÞ

�
dt; (35)

where r0 ¼ ðx0; y0Þ represent the transverse spatial coordinates,
and the parameter T represents the maximum value the azimu-
thal angle can take. Further, the function gðtÞ is a complex value
function, which, as we will show later, plays a major role in
the design of the curved laser trap. The desired optical field is
generated in the far field, which is achieved by means of a lens
of focal length f, acquiring the specific complex amplitude
distribution

Ẽðr; z ¼ uzðtÞÞ ¼ − iλ exp½ikuzðtÞ�
f

Z
T

0

gðtÞδ
�
1

f
ðRðtÞ − rÞ

�
dt:

(36)

Here, the function gðtÞ ¼ jgðtÞj exp½iΦðtÞ� accounts for the
phase of the trapping beam, which provides the mechanism be-
hind the propulsion of the trapped particles along the 3D para-
metric curve. More precisely, the variation of the phase of ẼðtÞ
is controlled by the function ΨðtÞ ¼ ΦðtÞ þ kuzðtÞ, which for
convenience can be expressed as

ΨðtÞ ¼ 2πl
SðTÞ SðtÞ; (37)

where SðTÞ is a real function. Further, the parameter l is
associated to the accumulation of the phase along the entire
parametric curve and, for closed curves, coincides with the topo-
logical charge of the beam. Crucially, since the force exerted on
the particles is proportional to the phase gradient, their speed
can be controlled as-desired by means of the function SðtÞ.
For example, to achieve a uniform propelling force and there-
fore a uniform speed, this function can be set to

Fig. 28 Optical trapping and transporting of microparticles along 3D parametrized trajectories.
(a) Particles trapped along a single ring in 3D. (b) Schematic representation of (a).
(c) Experimental intensity distribution of two tilted ring traps with opposite inclination. (d) Colloidal
silica spheres trapped in the two rings of (c). (e) Schematic 3D representation of the knotted
rings of (c) and (d). Adapted from Ref. 147.
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SðtÞ ¼
Z

t

0

jc0ðτÞjdτ: (38)

Here, jc0ðτÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðtÞ2 þ R0ðtÞ2 þ u0zðtÞ2

p
and c0ðtÞ ¼ dc∕dt.

The direction of motion of the particles can also be controlled
by simply reversing the sign of the topological charge l. See
Refs. 149 to 151 for a detailed description of the mechanism
behind the optical trapping and the propulsion forces involved
in this technique. By way of example, let us consider the case

EðrÞ ¼ 1

T

Z
T

0

Φðr; tÞφðr; tÞjc02ðtÞjdt (39)

to be encoded on an SLM,150 where t ∈ ½0; T�, c2ðtÞ ¼
ðx0ðtÞ; y0ðtÞ; z0ðtÞÞ is a 3D parametrized curve, and r ¼ ðx; yÞ.
Further, the derivative c02ðtÞ ¼ dc2ðtÞ∕dt is associated with the
length L ¼ R

t
0 jc02ðtÞjdt, where jc02ðtÞj ¼ ½x00ðtÞ2 þ y00ðtÞ2�

1
2 of the

3D curve. The function Φðr; tÞ can be written in the form of150

Φðr; tÞ ¼ exp

�
i
ρ2

½yx0ðtÞ − xy0ðtÞ�
�
exp

�
i2πm
SðTÞ SðtÞ

�
; (40)

where

SðtÞ ¼
Z

t

0

½x0ðτÞy00ðτÞ − y0ðτÞx00ðτÞ�dτ; (41)

with m and ρ being the free parameters to control the phase gra-
dient and the ring radius R ¼ λf∕2πρ at the focal plane, respec-
tively. The term φðr; tÞ is a quadratic phase term of the form

φðr; tÞ ¼ exp

�
iπ

½x − x0ðtÞ�2 þ ½y − y0ðtÞ�2
λf2

z0ðtÞ
�
; (42)

where z0ðtÞ is a defocusing parameter defined along c2ðtÞ.
Figure 25 shows an example of the phase and intensity distribu-
tions that are obtained. More precisely, Fig. 29(a) shows the phase
profile of a ring trap with a radius of R ¼ 5 μm with topological
charge m ¼ 30. The corresponding intensity profile is shown
on the right column. Figure 29(b) shows the phase profile of
a hypocycloid-shaped trap, parametrized as x0ðtÞ þ iy0ðtÞ ¼
ρ½2 expðitÞ þ expð−i2tÞ∕2�, where the phase gradient varies
along with the trap, as shown in Fig. 29(b1).

Figure 30 shows the complex motion of particles propelled
along a helically modulated toroidal surface.149 Figure 30(a)
shows the time-lapse images of trapped particles over a period
of 7 s along the decagon trajectory in Fig. 30(b), which is a pro-
jection of the 3D toroidal beam [see Fig. 30(c)] onto the x − y
plane. Figure 30(d) shows experimental intensity profiles of the
3D toroidal beam at two different axial planes of z ¼ �1 μm.

The general approach to determine the 3D parametric curve
consists of first defining a set of m points PðnÞ, n ¼
1; 2; 3;…; m, through which it must pass. The problem then
reduces to finding a piecewise parametric curve that passes
through these points. This problem was solved by Rodrigo et al.,
using a set of parametric curves, known in computer graphics
theory as Beziér Splines bnðτÞ, that join the points PðnÞ. As ex-
plained in Ref. 151, each Beziér spline is defined by four points,
two knot points, and two associated points, the former denoted

by PðnÞ
s and PðnÞ

e and the later by TðnÞ
s and TðnÞ

e , where the

subscripts s and e denote the starting and ending points.
Each Beziér spline is defined in terms of these points as

bnðτÞ¼ ð1− τÞ3PðnÞ
s þ3τð1− τÞ2TðnÞ

s þ3τ2ð1− τÞ2TðnÞ
e þ τ3PðnÞ

e ;

(43)

where τ ∈ ½0; 1�. The parametric curve is then given as

cðtÞ ¼ fb1ðτÞ; b2ðτÞ;…; bmðτÞg; (44)

which has to be continuous and differentiable; see Ref. 151 for
further details. An example of a parametric curve constructed in
this way is shown in the left panel of Fig. 31(a), where six Beziér
splines, represented by different colors, were used. The intensity
and phase profile of a laser beam focused along this curve are
shown in the middle and left panels, respectively, of the same
figure. Crucially, this construction method allows the real-time
reconfiguration of cðtÞ by simply shifting the knots points of the
Beziér splines. By way of example, the left panel of Fig. 31(b)
shows the progressive change of c1ðtÞ into cNðtÞ by shifting one

Fig. 29 Optical trapping with arbitrary 3D parametrized curves of
the beam. (a) Phase profile of a ring trap with topological charge
m ¼ 30 and (b) a triangle trap with topological charge m ¼ 34.
(b1) An expanded view of a section in (b), where the black arrows
indicate the vector field gradient. (c) Phase gradient modulus
corresponding to the beam in (b), where SP1 and SP2 indicate
stationary points where the modulus is maximum and minimum,
respectively. The top right images show 2D intensity profiles of
the focused beam in the x − y and x − z planes. (d) Schematic
representation of the optical tweezers, where the beam is fo-
cused into a sample cell containing silica beads of 1 μm through
a microscope objective with NA ¼ 1.4. Adapted from Ref. 149.
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knot point. Here, four microparticles, labeled as A, B, C, and D,
trapped along the curve, are illustrated, where the arrows show
their motion direction. The actual performance of such a real-
time reconfigurable optical trap was demonstrated experimen-
tally. To illustrate this, the middle panel of Fig. 31(b) shows
an example of the transition from c1ðtÞ into c22ðtÞ in an actual
optical trap experiment, where multiple microparticles were set
to move along the different curves. Here, only the cases defined
by the curves c1ðtÞ, c12ðtÞ, c16ðtÞ, and c22ðtÞ are shown. A time
lapse of the whole transition is shown in the right panel of the
same figure, where the motion direction of the particles is in-
dicated by the direction of the arrows.

4.3 Optical Trapping with Vector Beams

4.3.1 Engineering the optical forces via the vector’s beam
polarization

Controlling the polarization state of light is of paramount im-
portance in many fields of pure and applied sciences; however,
it is only in recent years that increasing attention has been given
to complex vector fields, often referred to as classically en-
tangled beams.153,154 In optical tweezers, the degree of polariza-
tion plays a crucial role in vector beams. For example, when
tightly focused, different states of polarization of the input
beams can lead to distinctive optical forces at the trapping plane.

Fig. 31 Example of a Beziér parametric curve and its application to reconfigure in real-time
the trajectory of microparticles. (a) Construction of a parametric curve using (left) Beziér splines,
(middle) intensity, and (left) phase of a laser beam following this parametric curve. (b) Example of
real-time reconfiguration of the curve shown in (a) and its application in a real-time reconfigurable
optical trap (middle). Adapted from Ref. 151.

Fig. 30 Optical trapping with 3D toroidal-spiral beams. (a) Time-lapse images of trapped
microparticles moving along the beam over 7 s, which results in (b) a decagon trajectory.
(c) 3D schematic representation of the toroidal-spiral curve, where the color scheme indicates
the axial z position of the curve. (d) Intensity profiles of the toroidal beam at two different axial
planes. Adapted from Ref. 149.
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Vector beams with radial and azimuthal polarizations are two
special cases. Radial polarization possesses a strong field com-
ponent along the propagation direction, while this is absent
from azimuthal polarization.155–158 Figure 32(a) schematically
illustrates this behavior. In a radially polarized vector beam,
the electric field oscillates radially in the transverse plane, with
no longitudinal component. However, when tightly focused
through a high numerical aperture lens, the beam is strongly
refracted toward the focus, giving rise to longitudinal electric
field components, as shown in Fig. 32(b). In the case of an
azimuthally polarized beam [see Fig. 32(c)], the electric field
oscillates circularly along a transverse plane to the beam propa-
gation that cannot generate a longitudinal electric field compo-
nent under tight focusing conditions. Indeed, radially polarized
vector beams are known for their ability to produce the smallest
focal spot size among the family of vector beams.159,160

Crucially, the use of complex states of polarization in tightly
focusing systems allows engineering of light fields, such as
polarization and intensity. For example, the shape of the focused
beam can be designed as flat-top by creating appropriate super-
positions of modes with specific polarization states.161 The ad-
dition of DOEs such as SLMs at the input plane allows for the
generation of exotic beam shapes, such as chains of light fields
containing 3D dark volumes (low intensity spots) along the light
field distributions.162,163 Precise control over the beam shape to
create a perfect spherical spot can be achieved using counter-
propagating vector beams, which are constructively interfering
at the common focal plane.164–166 In this configuration, radially
polarized vector beams can produce the spherical focal spot con-
taining solely longitudinal electric fields, in contrast to the use
of azimuthally polarized vector beams, which only contain the
transverse components in the electric field.167 It is worth noting
also that arbitrary control of the polarization state of a focused
field can be achieved by creating coaxial superpositions of two
vector beams with radial and azimuthal polarization, each of
which has a different weighting factor.168

4.3.2 Enhancement of optical forces

In recent years, it has been widely reported that the state of
polarization plays a crucial role in optical tweezers, which was
ignored in the early days of the study. Recent reports indicate
that radially polarized beams can enhance the axial trapping
efficiency up to twice that of linearly polarized light beams
at the expense of reducing the transverse trapping efficiency
by up to a half.169 Furthermore, azimuthally polarized vector
beams have demonstrated higher transverse trapping efficien-
cies than those of radially polarized ones.170 These features of
cylindrical vector beams are particularly useful for trapping

metallic particles exhibiting high levels of scattering and absorp-
tion of light. For example, the enhanced axial trapping effi-
ciency in radially polarized beams due to the strong axial field
component with a null axial Poynting vector allows the trapping
of metallic particles.171–173 In addition, the concurrent use of
π-phase radially and azimuthally polarized vector beams can en-
hance optical forces to a trapped particle by tuning the relative
phase between the eigenmodes comprising the beams.174

4.3.3 Optical trapping with an array of multiple vector beams

Recently, the generation of multiple vector beams from a multi-
plexed hologram displayed on a single SLMwas demonstrated.175

Each vector beam was generated by a pair of independent holo-
grams superimposed on an SLM. As they propagate along
independent optical paths using different diffraction gratings,
their polarization states can be modulated independently prior
to a coaxial recombination through a polarizing beam splitter.
In this way, an array of multiple vector beams can be generated
from multiple pairs of multiplexed holograms with independent
control over the transverse spatial positions of the beams and
their polarization states. Figure 33(a) shows the intensity profile
of nine vector beams with their polarization distribution in
Fig. 33(b). This approach allows the manipulation of multiple
particles at different vector beams possessing different polariza-
tion states. To experimentally deliver a desired array of vector
beams, a 4f lens system relays the SLM plane to the entrance
pupil of the microscope objective, as shown in Fig. 33(c).
With appropriate diffraction angles, the generated beam pairs
can be projected to the same position in the trapping plane.175

Figure 33(c) inset 2 shows an experimental image of four vector
beams at the trapping plane, after passing through the linear
polarizer.

4.3.4 Optical trapping with tractor beams

In contrast to the above discussed optical tweezers, where the
optical force exerted on the micro- and nanoparticles produces
an acceleration along the same direction of the photon flow in an
optical tractor beam, the optical forces drag small microparticles
against this flow, i.e., toward the photons source.28,176–180 In con-
trast to a conveyor belt that requires gradient forces to pull
microparticles toward the source of the photons,118 the pulling
forces of a tractor beam originate from a momentum conserva-
tion law. In essence, when the forward scattered light is more
collimated than the incident light, and if the backward scattering
is weak enough, the momentum conservation law predicts the
existence of a pulling force.177,181 This can be generated, for ex-
ample, by the interference of two plane waves [see Fig. 34(a)].
As illustrated here, each beam propagates along the wave vector

Fig. 32 (a) Schematic representation of cylindrical vector beams under tight focusing conditions.
Tightly focused vector beams with (b) radial polarization and (c) azimuthal polarization. Adapted
from Ref. 159.
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k1 and k2, whereas the resulting beam propagates in the forward
direction along k1 þ k2. Under these conditions, the majority of
the scattering is produced in the forward direction, which causes
a pushing force Fz in the opposite direction, as also indicated
here. Crucially, this polarization-dependent effect allows us
to switch between a pushing and a pulling force, by simply

changing the polarization of the incident waves, as shown in
Figs. 34(b) and 34(c), respectively. Crucially, the pulling effect
has been also explained in terms of the optical singularity of the
pointing vector around the scatterer.182

The optical pulling force can be achieved by utilizing struc-
tured beams, objects with specific opical parameters, structured

Fig. 34 (a) A conceptual representation of a tractor beam generated from the superposition of two
waves propagating along the wave vectors k1 and k2. The beam generated from the superposition
propagates in the forward direction, where the scattering is stronger, generating a pulling force in
the opposite direction. Crucially, this effect is polarization-dependent allowing us to switch from
a pulling to a pushing force, by simply changing the polarization of the incident beams, from s- to
p-polarized, as indicated in (b) and (c). Adapted from Ref. 181.

Fig. 33 Generation of vector beam arrays. (a) Experimental intensity profiles and (b) polarization
distribution of nine vector beams generated from a single hologram. (c) Schematic representation
of the experimental setup to generate multiple vector beams. Insets on the right illustrate the multi-
plexed hologram pair for the generation of two scalar beams traveling along two separate optical
paths. Inset 2 shows the generated four vector beams in the trapping plane. Adapted from the
University of the Witwatersrand.175
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background media, and photophoresis effect as well.180 The trac-
tor beam relying on photophoretic force is shown in Fig. 35.
A long-distance, stable and switchable optical transport was
achieved by the use of cylindrical vector beams.182 Here,
thin-walled spherical glass shells with a radius from 25 to
35 μm and a thickness from 200 to 400 nm were used, in which
light can be absorbed either in the vicinity of the front side (out-
side) or in the rear side (inside) of the particle. In the former
case, the photophoretic force pushes the particle along the
direction of light propagation, whereas in the latter case the
particle may be pulled against the beam propagation direction.
Importantly, these two situations could be exchanged by switch-
ing from a radially polarized beam to an azimuthally polarized
one or vice versa.

Figure 35(a) schematically illustrates a part of the experimen-
tal setup for this effect. To enhance the photophoretic forces, the
glass shells were coated with a thin layer of Au (7 to 15 nm) and
placed inside a rotating cylindrical cuvette, in which the rotating
axis was aligned to be parallel to the beam axis. Figure 35(a)
shows that the glass shells falling by gravity are trapped and
pushed outside the rotating cuvette by the vector beam. Here,

two half-wave plates allowed us to switch the vector beam from
radial to azimuthal polarization to generate a pushing or a pull-
ing force. Figure 35(c) shows the particle velocity depending on
the radius of the shell, for both azimuthally (pulling) and radi-
ally (pushing) polarized beams. Figure 35(d) schematically
shows the experimental observation of a particle pulled by an
azimuthally polarized beam, whereas Fig. 35(e) shows the case
of a particle pushed by a radially polarized beam.

4.4 Optical Trapping and Transporting of Metal
Nanoparticles

We know that the refraction and the dominant gradient force are
the bases for stable optical trapping of dielectric particles, while
the laser beam can induce relatively large scattering and absorp-
tion forces on metal particles close to their localized surface
plasmon resonances. Therefore, in the early days, it was gener-
ally accepted that stable optical trapping of metal nanoparticles
cannot be obtained readily.183 However, Svoboda and Block184

demonstrated that metal Rayleigh particles can be trapped stably
in 3D. In their experiment, the near-infrared laser beam was

Fig. 35 Demonstration of optical tractor beams. (a) Experimental setup showing the beam
convertor and the particle dispenser. Half-wave plates (λ∕2) are used to change the state of
polarization of the vector beam. (b) Profile of the vector beam along the propagation direction,
where the beam waist is represented in red and the region of stable trapping in yellow.
(c) Velocity of glass shells as a function of their external diameter for both (left) azimuthal
and (right) radial polarizations, where colors indicate data obtained for the same shell size.
(d) Snapshots of a shell (25 μm in radius), illuminated by an azimuthally polarized vector beam,
move against the beam propagation direction (pulling) at a speed of v ¼ 0.8 mms−1. (e) The same
particle illuminated by a radially polarized beam moves toward the beam propagation direction
(pushing) at a speed of v ¼ 0.4 mms−1. Adapted from Ref. 182.
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used to trap the gold nanoparticle, viz., the optical trapping
was achieved off-resonance. Interestingly, in 2008, Dienerowitz
et al.185 experimentally demonstrated that metal nanoparticles
can be trapped by laser beams close to their plasmonic reso-
nance. They showed that a vortex beam (LG beam with annular
profile) can confine the metal nanoparticles in the dark region
of the beam center. Since the vortex beam carries OAM, they
observed the rotation of particles as well [Fig. 36(a)]. Later,
Lehmuskero et al.186 optically trapped gold nanoparticles and
set them into orbital rotation with an orbiting frequency of
86 Hz using an LG vortex beam carrying OAM. In their experi-
ment, to achieve a stable trap, a q-plate [Fig. 36(b)] was adopted
to produce a vortex beam with uniform intensity distribution,
and a circularly polarized laser beam was used to induce circular
symmetric optical gradient forces. Recently, the dynamics of
electrodynamically coupled metal nanoparticles in an optical
ring vortex trap were studied.77 Figure 36(c) shows the sche-
matic of the focused Bessel–Gauss optical vortex beam and ring
trap over a gold nanoplate. They used a retroreflection geometry
with a gold nanoplate mirror to generate a constant-radius op-
tical vortex. They demonstrated that, compared with a glass cov-
erslip, the retroreflection geometry can significantly increase
the spatial confinement and optical drive force, and a superior
trap can be created accordingly.

Moreover, similar to the case of trapped dielectric particles,
the trapped metal particles can move along the beam when
trapped in a structured laser beam with a phase gradient as well.
Figure 37(a) shows the intensity profile of a Gaussian beam with
two different phase masks for producing the phase gradient with
opposite signs, namely, the type I and type II denote that the
phases are modulated by a convex and concave cylindrical lens,
respectively.187 Figure 37(b) shows that for a line optical trap of
the type I phase structure, the single silver nanoparticle moves
from the end to the center of the line, and, for a type II trap, the
single silver nanoparticle moves from the center to the end. Such
line optical traps were implemented for the assembly of multiple
silver nanoparticles. Besides, it was demonstrated that these
nanoparticle arrays could be assembled and disassembled as
desired by simply changing the sign of the phase gradient.
Recently, the pairwise interactions between metal nanoparticles
in a vortex ring trap with transverse phase gradients were
studied.189 This study focused on the deep understanding of
multiparticle dynamics during the self-assembly of optical mat-
ter. They revealed that for small phase gradients, the total force
is modulated by a separation-dependent interference effect.
On the contrary, for strong phase gradients, the symmetry of the
interaction between two nanoparticles breaks, resulting in a
change of the distance, for which stable binding can be

Fig. 36 Optical trapping of metal particles using structured beams. (a) The confinement and
manipulation of gold nanoparticles by LG vortex beams. The insets indicate the locations of these
two particles for different moments. Adapted from Ref. 185. (b) Fast orbital rotation of metal nano-
particles using circularly polarized vortex beam. Left: the image of the q-plate; middle: the illus-
tration of the optically trapped metal particle rotating along a circular orbit; left: image of the trapped
particle rotating along a circular orbit. Adapted from Ref. 186. (c) Optical manipulation of metal
particles using a retroreflection geometry with a gold nanoplate mirror. Left: schematic of the ring
vortex trap over a gold nanoplate; middle: image of two silver nanoparticles trapped over the gold
nanoplate mirror; right: the corresponding probability densities of silver nanoparticles in the ring
traps. Adapted from Ref. 77.
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achieved. More recently, Rodrigo et al.188 studied how to control
the speed of metal nanoparticles by tailored phase-gradient pro-
pulsion force. Figures 37(c) and 37(d) show two ring vortex
traps with a uniform phase gradient and a tailored nonuniform
phase gradient, respectively. From Figs. 37(c) and 37(d), we can
see that the metal nanoparticle in the second trap rotates much
faster than that in the first trap.

It is worth noting that the aforementioned works are limited
to 2D particle rotation in contact with a surface of the coverslip,
and the 3D trapping and motion control of metal nanoparticles
are not achieved until 2021. Rodrigo et al.152 experimentally
demonstrated the transport of metal nanoparticles in an optical
vortex ring trap along the 3D trajectory on demand. To obtain
3D optical manipulation of metal nanoparticles along an arbi-
trary curve, they adopted a freestyle laser trap,151 which can in-
duce a propulsion optical force due to the phase gradient of

the beam. The 3D ring trap of metal nanoparticles with uniform
phase gradient is shown in Fig. 38(a), which indicates that
the propulsion force is constant along the ring, while Fig. 38(b)
shows that the propulsion force increases with the increasing
angle. Besides, the tilted ring optical trapping and transport
of metal nanoparticles were demonstrated as well.152

4.5 Levitated Optomechanics with Structured Light
Beams

Structured light has demonstrated its extensive applications in
optical tweezers for micromanipulation in a liquid environment.
Only recently there has been a surge of interest in levitated
optomechanics using optical tweezers in air/vacuum.30,190–216

The dynamics of a levitated particle in a diluted gas or vacuum
environment (underdamped) is fundamentally different from

Fig. 37 2D optical trap of metal particles using a structured beam with a phase gradient.
(a) Schematic diagram of generating a structured beam with a phase gradient for the optical line
trap. Left: the intensity profile and designed phase masks for the optical traps of type I (top) and
type II (bottom), respectively; right: the intensity profiles and the corresponding phase profiles of
the structured beams with phase gradients for the two different types of line traps. (b) Trajectory
images of a single silver nanoparticle in the optical traps of type I (top) and type II (bottom),
respectively. The white dots denote the silver nanoparticles. (c) Intensity and phase profiles of
a vortex beam with a uniform phase gradient (top) and the corresponding trajectories of an opti-
cally transported gold nanoparticle around the optical ring traps (bottom). (d) Same as those in
(c) but for tailored nonuniform phase gradients. (a), (b) Adapted from Ref. 187. (c), (d) Adapted
from Ref. 188.
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those trapped in a viscous medium like water (overdamped) due
to the particle’s finite inertia, which is typically ignored in over-
damped systems (see Sec. 2.2). Including the inertial term, the
equation for the center-of-mass motion of an optically trapped
Brownian particle in one dimension (x direction) is described by
the Langevin equation:

mẍ ¼ −Γ0 _x − κ0xþ Fth; (45)

where x is the particle position, m is its mass, Γ0 is the friction
coefficient, and κ0 ¼ mΩ2

0 is the trap stiffness at the trap fre-
quency Ω0∕ð2πÞ. The fluctuating force Fth is due to the random
collisions from the surrounding fluid molecules. The corre-
sponding form of the PSD of the oscillation from Eq. (45) yields
the Lorentzian response

SxðωÞ ¼
kBT
πm

Γ0

ðω2 −Ω2
0Þ2 þ ω2Γ2

0

; (46)

where kB is Boltzmann’s constant, and T is the absolute temper-
ature. In the underdamped regime (Γ0 ≪ Ω0), the particle under-
goes high-quality mechanical oscillations with a quality factor
Q ¼ Ω0∕Γ0 at the oscillation frequency Ω0. In the experiment,
the damping Γ0 can be controlled by changing the pressure
inside the vacuum chamber, while Ω0 is determined by

ffiffiffiffiffiffiffiffiffiffiffi
κ0∕m

p
,

i.e., dependent on the optical power for trapping and mass of
the particle. At atmospheric pressures, Γ0 ð≫ 2Ω0Þ is typically
larger than the critical damping (Γ0 ¼ 2Ω0), and the PSD is sim-
ilar to those observed in liquids, exhibiting a roll-off frequency
at Ω0. At a gas pressure <10 mbar, the levitated particle is typ-
ically underdamped (Γ0 ≪ Ω0), where a strong resonant peak
evolves at Ω0, which is the signature of high-quality mechanical
oscillations. Thus, levitated nanomechanical oscillators with high
quality factors have been identified as promising candidates for

ultrasensitive force and acceleration detectors,217,218 achieving a
force sensitivity in the order of zepto-Newton in high vacuum.219

A great driving force in the development of levitated opto-
mechanics has been their potential for the realization of ground
state cooling of nanomechanical oscillators. Integrating both
sides over ω in Eq. (46) yields the MSD

hx2i ¼ kBTCM

mΩ2
0

: (47)

Thus, the center-of-mass motion temperature TCM of the trapped
particle is proportional to its MSD when the trap is at thermal
equilibrium. In levitated systems, due to the presence of inertia,
stochastic forces can be well controlled by external optical
forces as a means of artificial damping. Tremendous progress
has been made in cooling TCM, i.e., minimizing hx2i toward
the ground state for the demonstration of the quantum behavior
of a mesoscopic object, using feedback cooling190–194 and cavity
cooling schemes,195–198 including the first demonstration of
ground state cooling.198 The exquisite control achieved in these
experiments also opens up a broad range of exciting new experi-
ments for testing fundamental theories of physics both in the
quantum and classical regimes as well as platforms toward
developing next-generation sensing technologies (see, for exam-
ple, Refs. 30 and 199 for comprehensive reviews). Optical
tweezers are capable of confining objects in vacuum ranging
in size from tens of nanometers up to several micrometers, cov-
ering materials of silica,220,221 diamonds,205,222 and birefringent
crystals, such as vaterite,223,224 using either single190,225 or coun-
terpropagating beam geometries.217,226 The use of structured light
in levitated optomechanics has found some applications so
far,225–228 yet it has great potential to advance this emerging field.
In this section, we will discuss recent developments in levitated
optomechanics based on the use of structured light.

Fig. 38 3D trapping and transporting of metal nanoparticles. (a) Left: ring trap with uniform phase
gradient. The inset shows that the location of the trap is 10 μm from the chamber wall (coverslip).
Middle: theoretical and experimental estimated optical propulsion force along the ring of the trap.
Right: the time-lapse image of the nanoparticles in the ring trap. (b) Same as those in (a) but for
tailored phase gradient. Adapted from Ref. 152.
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We first discuss the exchange of OAM between light and
matter in the underdamped regime. Mazilu et al.201 demonstrated
an optically levitated silica microparticle (5 μm in diameter)
placed within an LG beam (optical power of 81.6 mW), where
the beam’s annular diameter is larger than the particle diameter
in a vacuum environment (gas pressure of∼150 mbar). Through
light scattering, the OAM of light is transferred to the levitated
microparticle, which orbits around the annular beam profile
with increasing angular velocity as the gas pressure is reduced.
Figure 39 shows numerical simulations and experimental obser-
vations of particle trajectories for different topological charge l.
Both orbital radius and velocity increase with l, where the out-
ward inertial force (centrifugal in this case) can be counteracted
by the radial trap only up to a maximal orbital velocity with l
up to 14 [Figs. 39(d) and 39(e)]. On the other hand, no orbital
motion is observed for l smaller than 5, as the diameter of the
trapping beam is smaller than the diameter of the particle
[Figs. 39(d) and 39(e)]. This leads to rotation of the particle
at a stable particle position in the center of the beam.

Levitated systems based on LG beams thus rely on a delicate
balance between the optical gradient and scattering forces, with
contributions from inertial forces and gravity. Importantly, the
study demonstrated that there is a fundamental limit to the mag-
nitude of OAM that can be transferred to a levitated particle in
the underdamped regime.

It is interesting to consider the case of a particle placed within
a perfect vortex beam (see Sec. 4.1.3),123,124 where the beam ra-
dius is independent of l. Arita et al.202 explored vacuum trap-
ping of a silica microparticle (5 μm in diameter) placed within
an optical potential comprising a perfect vortex beam, which is
the Fourier transform of a Bessel beam. In such an optical land-
scape, the trapped particles exhibit a complex 3D orbital motion

that includes a periodic radial motion around the perfect vortex
beam. Figure 40(a) shows the particle trajectories with different
topological charge (l ¼ 3, 10, 30). To understand the complex
motion, a 3D topography of the perfect vortex beam was inves-
tigated when l ¼ 15 [see Fig. 40(b)].

Here, we note that a perfect vortex beam is the Fourier
transform of a Bessel beam. This means that over the 3D space
the perfect vortex (z ¼ 0 μm) evolves on propagation to the
Bessel beam within tens of micrometers (z ¼ 30 μm), which
has implications for particle dynamics. Figure 40(b) includes
a schematic of the particle motion that depicts the particle
trajectory: (1) trapped and set into rotation at the Bessel beam;
(2) horizontally launched into free space and landing on the per-
fect vortex beam; (3) driven by both the scattering and gradient
forces toward the Bessel beam, where the particle restarts its
orbital cycle, but its radial excursion can be branched into
different directions with different radial ranges depending on
l [see Fig. 40(a)]. In underdamped systems, a perfect vortex
and accompanied Bessel beams can produce a rich variety of
orbital motions, where the optical gradient and scattering forces
interplay with the inertial and gravitational forces acting on the
trapped particle. OAM transfer in levitated systems offers per-
spectives for testing nonlinear dynamics of nanomechanical ro-
tors and resonators beyond translational or harmonically bound
motion203 and for mesoscopic quantum studies analogous to
quantum gases interacting with light fields possessing OAM.204

Zhou et al. also proposed the use of LG beams for the
levitation of nanodiamonds with nitrogen-vacancy (NV) centers
in high vacuum.112 Nanodiamonds are promising candidates
for the realization of hybrid quantum systems featuring high-
quality mechanical oscillations with long spin coherence time
(∼100 μs) of the electron spins of NV centers.205 However,

Fig. 39 Particle trajectories of a silica microparticle levitated in LG beams with different topological
charges. (a)–(c) Numerical simulations for l from 1 up to 15. (d), (e) Measured versus calculated
orbital radius and velocity as a function of l. Adapted from Ref. 201.
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the light absorption of nanodiamonds from the trapping laser
beam typically causes thermal damage and prevents experi-
ments in high vacuum. Trapping of nanodiamonds in a core-
shell structure (a nanodiamonds-core in a less absorptive silica
shell) with LG beams minimizes the overlap of the beam with
the trapped nanodiamonds, thus avoiding significant heating of
the system. Figure 41 shows the schematic of the dual beam trap
with linearly polarized LG03 beams and the geometry of the trap
relative to the trapped core-shell particle in the focal region. The
low-absorptive silica shell acts as a sample-holder, which inter-
acts with the trapping beam and provides the scattering force for
levitation. Thus, the nanodiamonds-core has negligible interac-
tion with the annular-shaped trapping beam.

Their numerical study revealed that the stability of the trap
and the rate of light absorption are dependent on the azimuthal
index and the polarization of the LG beams, in which the

azimuthally polarized Gaussian (LG00) and the linearly polar-
ized (LG03) beams are the optimal choices to trap a core-shell
particle while avoiding significant heating (<500 K) of nano-
diamonds.

Other key areas of levitated optomechanics relevant to struc-
tured light include the use of nonstandard Gaussian optical
potentials for studying thermodynamics and nonequilibrium
physics of small systems. Levitated systems are well suited
to studying Brownian motion of a well-isolated single particle
with high temporal and spatial resolution. By modulating the
spatial profile of the optical potential, the motion of the particle
can be controlled, providing the potential for constructing new
kinds of heat engines based on levitated nanoparticles206,207 as
well as new insights into stochastic processes in the under-
damped regime.208

With a double-well optical potential, Rondin et al.209 ad-
dressed the Kramers turnover problem. It describes the transi-
tion between two local potential minima as the surrounding gas
friction is varied. The double-well potential was created by two
tightly focused laser beams [Fig. 42(a)], where the intensity and
exact relative position of the two foci determine the height of
the energy barriers [Figs. 42(b) and 42(c)]. The transition rates
between the two wells are determined by the potential profiles at
the extrema and by the surrounding gas viscosity or pressure.
Figure 42(d) shows the Kramers turnover rate at different gas
pressures using an optically levitated nanoparticle, showing
an excellent agreement with theory (solid line). Here, the struc-
tured light field offers an experimental platform, where the levi-
tated nanoparticle serves as a statistical simulator, allowing us to
test fundamental theories of thermodynamics in small systems.

The double-well potential can be used to study collective
particle dynamics, e.g., optical binding21 and forces between
levitated particles.210 Arita et al.211 demonstrated trapping and
rotation of two microparticles in vacuum using an SLM-based
approach, allowing individual control over the rotation direction
and rate to each trap and the interparticle separation. By trapping
and rotating two vaterite birefringent microparticles with circu-
larly polarized light, they observed macroscopic Raman-like
modulation of the incident light field at the sum and difference

Fig. 41 Trapping of nanodiamonds with linearly polarized LG03

beams. (a) Schematic of the dual beam trap. (a) Geometry of the
trap relative to a nanodiamonds-core (core radius r ¼ 100 nm)
coated with a silica shell (shell radius R ¼ 1 μm) (b) from the side
and (c) axial views, respectively. Adapted from Ref. 112.

Fig. 40 Perfect vortex traps in vacuum. (a) Particle trajectories with different topological charges
l ¼ 3, 10, and 30 for blue, green, and red crosses, respectively. Circled numbers indicate the
order of the walked path when l ¼ 30 (red crosses). (b) Topography of the measured perfect
vortex and Bessel beams (l ¼ 15) around the beam axis (x ¼ y ¼ 0 μm) with a schematic of
particle motion. Adapted from Ref. 202.
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frequencies with respect to the individual rotation rates. This
first demonstration of optical interference between two micro-
particles in vacuum provided a strong foundation to explore
optical binding of two microgyroscopes in the underdamped
regime.212 Figure 43(a) shows a stroboscopic image of two va-
terite microparticles optically levitated and rotated in vacuum.
Depending on the particle separation R, these particles are op-
tically bound through light scattering, forming a shallow optical
potential related to the collective center-of-mass motion of the
two-particle system [dashed line in Fig. 43(b)]. The two-particle
array was trapped in vacuum by the two foci of the trapping
laser beams of 1070 nm with varied interparticle separation R
[Fig. 43(c)]. Figure 43(d) shows the experimental data from
Arita et al.,212 which, for the first time, measured the optical
binding strength depending on the particle separation R, using
optically trapped and rotated microparticles.

Levitated multiparticle systems demonstrated in these experi-
ments open up a promising scope for addressing mesoscopic
quantum entanglement213 and, by including the rotational de-
grees of freedom, quantum/vacuum friction,214–216 provided that
interparticle cooling or sufficiently high rotation rates can be
achieved. We note that, at the time of finalizing the manuscript
for this article, Svak et al.229 also demonstrated optical binding
of multiple particles levitated in vacuum using the counterpro-
pagating beam geometry.

4.6 Biomedical Application of Optical Trapping with
Structured Light

Ashkin and Dziedzic230 demonstrated the trapping and manipu-
lation of tobacco mosaic viruses and Escherichia coli bacteria
using single-beam optical tweezers. A single cell had also
been trapped in the single optical tweezers using infrared laser
beams,18 as shown in Figs. 44(a) and 44(b). Figures 44(a) and

Fig. 42 Testing Kramers turnover with a double-well potential. (a) Two focused infrared beams
forming two potential wells (A and C) linked by a saddle point B. (b) Potential profile in the trans-
verse (x − y ) plane, where the dotted line represents the minimum energy path. (c) Potential en-
ergy profile with energy barriers UA and Uc at A and C. (d) Kramers turnover rate depending on
gas pressure. Adapted from Ref. 209.

Fig. 43 Optical binding between two rotating microparticles in
vacuum. (a) Two vaterite birefringent microparticles optically levi-
tated and rotated in vacuum with a scale bar of 5 μm. (b) Two
normal modes of the bound array with the potential (dashed line)
related to the center-of-mass motion of the two-particle system.
(c) Double trap formed by two foci of the trapping laser beams
(1070 nm). (d) Optical binding strength ξ relative to the trap stiff-
ness κ of individual particles and particle displacement Δd as
a function of the particle separation R . Insets show the particle
displacement Δd induced by the presence of the other particle
with R ¼ 9.8 μm. Adapted from Ref. 212.
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44(b) show the division of yeast cells in the optical trap with
an initial clump of two cells divided into six cells after an
elapsed time of about 3 h. They also demonstrated the manipu-
lation of particles within the cytoplasm of a spirogyra and sub-
cellular organelle.18,232 Later on, optical tweezers were applied to
study a series of single molecule protein, nucleic acid, and
enzymes and provide an important and fine tool in the single
molecule arsenal.17,233,234 There are a series of review articles
on high-resolution optical tweezers and single molecule bio-
physics. Although the single beam optical tweezers have great
contributions in biology studies, especially single molecule bio-
physics,234 the complex manipulation of the biological cells is in
high demand. Here, we only focus on the application of struc-
tured light in optical tweezers, which also covers a broad area in
biomedical applications of optical tweezers. HOTs with struc-
tured light allow the manipulation and patterning of multiple
cells both of the same or different species to form building
blocks similar to primary tissue.231 Figures 44(c) and 44(d) show
the mouse embryonic and mesenchymal (arrow) stem cells
trapped in the HOTs with a structured beam. Figures 44(e)
and 44(f) demonstrate the mouse primary calvarae cells (arrow)
surrounded by embryonic stem cells.235 These examples suggest
that optical tweezers with structured light have been playing an
important role in single-/multiple-cell manipulation for tissue
engineering and cell cluster studies.

It is worth mentioning that the rod-shaped bacteria caught
in the optical trap often align their orientation with the light
propagation.235 On occasion of a bacteria cluster, it will be
clearer to align the rod-shaped bacteria parallel to the observa-
tion plane. The holographically shaped tug-of-war tweezers

with elongated focus provide the possibility to orient the bac-
teria, with better trapping stability over conventional dual-beam
tweezers on the bacteria.236 Ultimately, the optical tweezers
would be able to manipulate the cells in vivo.237 Figure 45 shows
the optical trapping of red blood cells in the blood vessels of
mouse ear238 and zebrafish.239 The optical tweezers can either
induce a clot inside the blood vessel or clear the jammed blood
vessel with optical manipulation. With injected nanoparticles,
the particle (green arrowhead) adhered to the endothelium of
the caudal vein [blue dotted lines in Fig. 45(e)] is pulled away
from the endothelium into the fast blood flow (purple arrow)
using optical tweezers (black crosshairs). At a time of 5.5 s,
an erythrocyte is drawn into the trap. This replaces the particle
in the trap, which is subsequently pulled back toward the origi-
nal adhesion point of the endothelium. Four separate particles
(numbered) are fished out of the blood flow and moved toward a
sheltered region at the tip of the tail. The structured light may, in
the future, provide even more complex manipulation of multiple
particles in the patterned trajectories in vivo.

Although biological cells have a refractive index above
that of the surrounding environment (positive polarizability), the
refractive index contrast is very weak. Hence, the trapping of
biological cells is less stable as compared with the standard pol-
ymer sphere. However, the cells may assume different geometry,
i.e., rod-shape or irregular shape, HOTs could provide multiple
traps to hold the biological cells with weak refractive index con-
trast. The dual-trap holographic tweezers could hold two ends of
a bacterium and align the bacterium horizontally [schematics in
Fig. 46(a)]; in contrast, the bacterium is aligned vertically in a
single beam optical trap [schematics in Fig. 46(b)]. Figure 46(c)

Fig. 44 Trapping of biological cells with structured beams. (a) Trapping of yeast cell in IR trap.
(b) Division of yeast cell in single trap. (c)–(f) Patterning of multiple cell types using HOTs.
(c), (d) Mouse embryonic and mesenchymal (arrow) stem cells. (e), (f) Mouse primary calvarae
cells (arrow) and embryonic stem cells. Scale bar is 12 μm. (a), (b) Adapted from Ref. 18.
(c)–(f) Adapted from Ref. 231.
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shows the T-cell trapped in the single beam optical trap, which
clearly suggests that the cell is rotating while the stage is mov-
ing. Figure 46(d) shows the position distribution of the cell
(black) and a polymer sphere (red). The T-cell is more scattered

around the tweezers in contrast to the polymer sphere. The holo-
graphic dual trap was able to hold the T-cell more stably than a
single optical trap.240 One benefit of using multiple optical
tweezers is to align the orientation of the cell for specific

Fig. 45 Optical trapping of the red blood cells in vivo. (a)–(d) Trap and manipulate the red blood
cells in vivo in the ear blood vessel of the mouse. (a)–(d) Adapted from Ref. 238. (e), (f) Trap and
manipulate the nanoparticle in vivo. Purple arrows indicate flow direction. Experiment was re-
peated at least 10 times. Scale bar is 5 μm. (e), (f) Adapted from Ref. 239.

Fig. 46 Strategies for stable optical trapping of rod-shaped bacteria. Schematics for (a) holo-
graphic dual-trap optical tweezers and (b) conventional single-trap optical tweezers. (c) The T-cell
under single beam optical tweezers experiences rotation in the presence of stage motion. (d) The
locations of a single cell (black) and a standard polymer sphere (red) in single optical tweezers and
the positional traces (right). (e) The combination of dSTORM and optical trapping allows isotropic
super-resolution of 2D localization microscopy for each orientation of the rod-shaped bacterium.
(f) The schematics of tug-of-war tweezers for the study of bacteria disassembly. Adapted from
Refs. 240, 241, and 236.
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applications, e.g., super-resolution nanoscopy toward a certain
direction.241 This is another advantage of combining the HOTs
with structured light and interdisciplinary methods, e.g., super-
resolution microscopy and Raman spectroscopy. Figure 46(e)
shows the super-resolution image of the rod-shaped bacterium
held in a dual trap optical tweezers.241 Noticeably, Fig. 46(f)
shows that the holographic tweezers also allow the study of
bacteria cluster disassembly using the tug-of-war tweezers.236

In summary, optical trapping with structured light has been
changing the style of optical manipulation in a more compli-
cated fashion and extending the application in cell manipulation
with finer possibilities.

5 Conclusions and Outlook
Structured light, custom light fields with tailored phase, inten-
sity, or polarization, can help us understand the nature of the
light. It is hard to overstate the importance of structured optical
beams for the astonishingly wide range of applications. In this
review, we have covered many seminal contributions and the
recent advances in optical tweezers using structured light beams,
from single to arrays of traps, and for both scalar and vector light
beams. Since the invention of optical tweezers, the technique
has evolved into a variety of forms, which are the most powerful
and indispensable tools for the study of light–matter interactions
at the micro- and nanoscales. We have reviewed the remarkable
progress that has been made in this field, including optical trap-
ping in suspension and air/vacuum, optical transporting of metal
nanoparticles, and the biomedical application of optical trap-
ping. It is clear that optical tweezers will evolve as beam shaping
technologies evolve, for example, tractor beams,177–182,242 anoma-
lous vortex beams,243,244 partially coherent vortex beams,245,246

grafted vortex beams,247,248 and structured light with photonic
and plasmonic structures.249–253 There is no doubt that new de-
velopments in structured light beams will continuously boost
the fields of optical manipulation.254

Moreover, among the diverse optical trapping schemes dis-
cussed in this review, in our view, several topics have great
potential to find exciting future applications, such as the optical
trapping of metal particles183–189 and chiral particles,52,53 vacuum
levitation,190–229 structured light in waveguides,255–259 optical
binding and other collective motions in structured light
fields,113,185,260–262 quantum optomechanics,30 and optical trapping
for multidisciplinary applications.32 In the future, besides SLMs
and DMDs, more flexible, efficient and much less expensive
devices will be developed to produce structured beams, which
can help build the next generation of optical trapping technol-
ogy. Furthermore, acoustic trapping30 and plasmonic trapping252

have developed rapidly in recent years, and trapping of nano-
particles with electron beams263,264 has emerged as well, which
can find promising applications in biosciences, biosensors, and
engineering as well.
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36. K. Dholakia and T. Čižmár, “Shaping the future of manipula-
tion,” Nat. Photonics 5(6), 335–342 (2011).

37. R. Bowman andM. Padgett, “Optical trapping and binding,” Rep.
Prog. Phys. 76(2), 026401 (2013).

38. P. Polimeno et al, “Optical tweezers and their applications,”
J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).

39. Y. Harada and T. Asakura, “Radiation forces on a dielectric
sphere in the Rayleigh scattering regime,” Opt. Commun.
124(5–6), 529–541 (1996).

40. A. B. Stilgoe et al., “The effect of Mie resonances on trapping in
optical tweezers,” Opt. Express 16(19), 15039–15051 (2008).

41. P. Jones, O. Marago, and G. Volpe, Optical Tweezers: Principles
and Applications, Cambridge University Press (2015).

42. S. E. S. Skelton and K. Dholakia, “Trapping in a material world,”
ACS Photonics 3(5), 719–736 (2016).

43. M. Friese et al., “Optical alignment and spinning of laser-trapped
microscopic particles,” Nature 394(6691), 348–350 (1998).

44. K.-N. Liou, “A complementary theory of light scattering by
homogeneous spheres,” Appl. Math. Comput. 3(4), 331–358
(1977).

45. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories,
Springer, Berlin, Heidelberg (2011).

46. L.-M. Zhou et al., “Sensitivity of displacement detection for
a particle levitated in the doughnut beam,” Opt. Lett. 43(19),
4582–4585 (2018).

47. P. Langevin, “Sur la théorie du mouvement brownien,” C. R.
Acad. Sci. (Paris) 146, 530–533 (1908). English translation in
Am. J. Phys. 65(11), 1079–1081 (1997)

48. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis
for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).

49. J. Poynting, “The wave motion of a revolving shaft, and a sug-
gestion as to the angular momentum in a beam of circularly
polarised light,” Proc. R. Soc. London A 82(557), 560–567
(1909).

50. R. Beth, “Mechanical detection and measurement of the angular
momentum of light,” Phys. Rev. 50(2), 115–125 (1936).

51. A. Fernández-Nieves et al., “Optically anisotropic colloids of
controllable shape,” Adv. Mat. 17(6), 680–684 (2005).

52. G. Tkachenko and E. Brasselet, “Helicity-dependent three-
dimensional optical trapping of chiral microparticles,” Nat.
Commun. 5, 4491 (2014).

53. I. A. Vovk et al., “Chiral nanoparticles in singular light fields,”
Sci. Rep. 7(1), 45925 (2017).

54. H. He et al., “Direct observation of transfer of angular momen-
tum to absorptive particles from a laser beam with a phase
singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).

55. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical
particle trapping with higher-order doughnut beams produced us-
ing high effciency computer generated holograms,” J. Mod. Opt.
42(1), 217–223 (1995).

56. M. Friese et al., “Optical angular-momentum transfer to trapped
absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996).

57. S. Parkin et al., “Measurement of the total optical angular
momentum transfer in optical tweezers,” Opt. Express 14(15),
6963–6970 (2006).

58. A. O’Neil et al., “Intrinsic and extrinsic nature of the orbital angular
momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).

59. V. Garces-Chavez et al., “Observation of the transfer of the local
angular momentum density of a multiringed light beam to an
optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).

60. N. B. Simpson et al., “Mechanical equivalence of spin and orbital
angular momentum of light: an optical spanner,” Opt. Lett. 22(1),
52–54 (1997).

61. K. T. Gahagan and G. A. Swartzlander Jr., “Trapping of low-
index microparticles in an optical vortex,” Opt. Lett. 21(11),
827–829 (1996).

62. K. Gahagan and G. Swartzlander, “Trapping of low-index micro-
particles in an optical vortex,” J. Opt. Soc. Am. B 15(2), 524–534
(1998).

63. J. Durnin, “Diffraction-free beams,” Phys. Rev. Lett. 58(15),
1499–1501 (1987).

64. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a
new light,” Contemp. Phys. 46(1), 15–28 (2005).

65. R. P. MacDonald et al., “Interboard optical data distribution by
Bessel beam shadowing,” Opt. Commun. 122(4–6), 169–177
(1996).

66. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of
a distorted nondiffracting beam,” Opt. Commun. 151(4–6),
207–211 (1998).

67. Y. Shen et al., “Optical vortices 30 years on: OAM manipulation
from topological charge to multiple singularities,” Light Sci.
Appl. 8(1), 90 (2019).

68. V. Garcés-Chávez et al., “Simultaneous micromanipulation in
multiple planes using a self-reconstructing light beam,” Nature
419(6903), 145–147 (2002).

69. F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,”
Opt. Commun. 64(6), 491–495 (1987).

70. K. Volke-Sepúlveda et al., “Orbital angular momentum of a high-
order Bessel light beam,” J. Opt. B 4(2), S82–S89 (2002).

71. A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizón,
“Generation of the ‘perfect’ optical vortex using a liquid-crystal
spatial light modulator,” Opt. Lett. 38(4), 534–536 (2013).

72. J. Pinnell, V. Rodríguez-Fajardo, and A. Forbes, “How perfect
are perfect vortex beams?” Opt. Lett. 44(22), 5614–5617 (2019).

73. P. Vaity and L. Rusch, “Perfect vortex beam: Fourier transforma-
tion of a Bessel beam,” Opt. Lett. 40(4), 597–600 (2015).

74. G. Tkachenko et al., “Is it possible to create a perfect fractional
vortex beam?” Optica 4(3), 330–333 (2017).

75. Y. Roichman and D. Grier, “Three-dimensional holographic ring
traps,” Proc. SPIE 6483, 64830F (2007).

76. Y. Roichman et al., “Optical forces arising from phase gradients,”
Phys. Rev. Lett. 100(1), 013602 (2008).

77. P. Figliozzi et al., “Driven optical matter: dynamics of electrody-
namically coupled nanoparticles in an optical ring vortex,” Phys.
Rev. E 95(2), 022604 (2017).

78. Y. Sokolov et al., “Hydrodynamic pair attractions between driven
colloidal particles,” Phys. Rev. Lett. 107(15), 158302 (2011).

79. K. Saito, S. Okubo, and Y. Kimura, “Change in collective motion
of colloidal particles driven by an optical vortex with driving
force and spatial confinement,” Soft Matter 14(29), 6037–6042
(2018).

80. Y. Sassa et al., “Hydrodynamically induced rhythmic motion of
optically driven colloidal particles on a ring,” Phys. Rev. E 85(6),
061402 (2012).

Yang et al.: Optical trapping with structured light: a review

Advanced Photonics 034001-36 May∕Jun 2021 • Vol. 3(3)

https://doi.org/10.1016/S0091-679X(06)82006-6
https://doi.org/10.1016/S0091-679X(06)82006-6
https://doi.org/10.1364/AOP.378390
https://doi.org/10.1364/AOP.378390
https://doi.org/10.1364/AOP.11.000577
https://doi.org/10.1364/AOP.11.000577
https://doi.org/10.1088/1361-6633/ab6100
https://doi.org/10.1088/1361-6633/ab6100
https://doi.org/10.1038/s42254-020-0215-3
https://doi.org/10.1002/adom.201801672
https://doi.org/10.1063/5.0013276
https://doi.org/10.1002/adom.201800005
https://doi.org/10.1002/adom.201800005
https://doi.org/10.1038/nnano.2013.208
https://doi.org/10.1038/nphoton.2011.80
https://doi.org/10.1088/0034-4885/76/2/026401
https://doi.org/10.1088/0034-4885/76/2/026401
https://doi.org/10.1016/j.jqsrt.2018.07.013
https://doi.org/10.1016/0030-4018(95)00753-9
https://doi.org/10.1364/OE.16.015039
https://doi.org/10.1021/acsphotonics.6b00023
https://doi.org/10.1038/28566
https://doi.org/10.1016/0096-3003(77)90018-2
https://doi.org/10.1364/OL.43.004582
https://doi.org/10.1119/1.18725
https://doi.org/10.1119/1.18725
https://doi.org/10.1063/1.1645654
https://doi.org/10.1098/rspa.1909.0060
https://doi.org/10.1103/PhysRev.50.115
https://doi.org/10.1002/adma.200401462
https://doi.org/10.1038/ncomms5491
https://doi.org/10.1038/ncomms5491
https://doi.org/10.1038/srep45925
https://doi.org/10.1103/PhysRevLett.75.826
https://doi.org/10.1080/09500349514550171
https://doi.org/10.1103/PhysRevA.54.1593
https://doi.org/10.1364/OE.14.006963
https://doi.org/10.1103/PhysRevLett.88.053601
https://doi.org/10.1103/PhysRevLett.91.093602
https://doi.org/10.1364/OL.22.000052
https://doi.org/10.1364/OL.21.000827
https://doi.org/10.1364/JOSAB.15.000524
https://doi.org/10.1080/0010751042000275259
https://doi.org/10.1016/0030-4018(95)00432-7
https://doi.org/10.1016/S0030-4018(98)00085-6
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.1038/nature01007
https://doi.org/10.1016/0030-4018(87)90276-8
https://doi.org/10.1088/1464-4266/4/2/373
https://doi.org/10.1364/OL.38.000534
https://doi.org/10.1364/OL.44.005614
https://doi.org/10.1364/OL.40.000597
https://doi.org/10.1364/OPTICA.4.000330
https://doi.org/10.1117/12.701034
https://doi.org/10.1103/PhysRevLett.100.013602
https://doi.org/10.1103/PhysRevE.95.022604
https://doi.org/10.1103/PhysRevE.95.022604
https://doi.org/10.1103/PhysRevLett.107.158302
https://doi.org/10.1039/C8SM00582F
https://doi.org/10.1103/PhysRevE.85.061402


81. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-
Cerda, “Alternative formulation for invariant optical fields:
Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000).

82. J. C. Gutiérrez-Vega and R. M. Rodríguez-Dagnino, “Mathieu
functions, a visual approach,” Am. J. Phys. 71(3), 233–242 (2003);

83. F. W. Olver et al., NIST Handbook of Mathematical Functions
Hardback and CD-ROM, Cambridge University Press (2010).

84. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite
energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).

85. G. A. Siviloglou et al., “Observation of accelerating Airy beams,”
Phys. Rev. Lett. 99(21), 213901 (2007).

86. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–Gaussian modes
of the paraxial wave equation and stable resonators,” J. Opt. Soc.
Am. A 21(5), 873–880 (2004).

87. Yao-Li et al., “Classically entangled Ince–Gaussian modes,”
Appl. Phys. Lett. 116(22), 221105 (2020).

88. C. Alonzo, P. Rodrigo, and J. Glückstad, “Helico-conical optical
beams: a product of helical and conical phase fronts,” Opt.
Express 13(5), 1749–1760 (2005).

89. N. Hermosa, C. Rosales-Guzmán, and J. P. Torres, “Helico-
conical optical beams self-heal,” Opt. Lett. 38(3), 383–385
(2013).

90. D. G. Hall, “Vector-beam solutions of maxwell’s wave equation,”
Opt. Lett. 21(1), 9–11 (1996).

91. M. A. Bandres and J. C. Gutierrez-Vega, “Vector helmholtz-
gauss and vector laplace-gauss beams,” Opt. Lett. 30(16),
2155–2157 (2005).

92. S. Chen et al., “Generation of arbitrary cylindrical vector beams
on the higher order Poincaré sphere,” Opt. Lett. 39(18), 5274–
5276 (2014).

93. Q. Zhan, “Cylindrical vector beams: from mathematical concepts
to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).

94. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radi-
ally polarized beams interferometrically,” Appl. Opt. 29(15),
2234–2239 (1990).

95. N. Passilly et al., “Simple interferometric technique for genera-
tion of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5),
984–991 (2005).

96. J. Mendoza-Hernández et al., “Cylindrical vector beam generator
using a two-element interferometer,” Opt. Express 27(22),
31810–31819 (2019).

97. N. Radwell et al., “Achromatic vector vortex beams from a glass
cone,” Nat. Commun. 7(1), 10564 (2016).

98. Y. Kozawa and S. Sato, “Generation of a radially polarized laser
beam by use of a conical brewster prism,” Opt. Lett. 30(22),
3063–3065 (2005).

99. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital
angular momentum conversion in inhomogeneous anisotropic
media,” Phys. Rev. Lett. 96(16), 163905 (2006).

100. D. Naidoo et al., “Controlled generation of higher-order Poincaré
sphere beams from a laser,” Nat. Photonics 10(5), 327–332
(2016).

101. R. C. Devlin et al., “Arbitrary spin-to-orbital angular momentum
conversion of light,” Science 358(6365), 896–901 (2017).

102. J. A. Davis et al., “Two-dimensional polarization encoding with
a phase-only liquid-crystal spatial light modulator,” Appl. Opt.
39(10), 1549–1554 (2000).

103. I. Moreno et al., “Complete polarization control of light from
a liquid crystal spatial light modulator,” Opt. Express 20(1),
364–376 (2012).

104. C. Rosales-Guzmán, N. Bhebhe, and A. Forbes, “Simultaneous
generation of multiple vector beams on a single SLM,” Opt.
Express 25(21), 25697–25706 (2017).

105. S. Liu et al., “Highly efficient generation of arbitrary vector
beams with tunable polarization, phase, and amplitude,”
Photonics Res. 6(4), 228–233 (2018).

106. Y.-X. Ren, R.-D. Lu, and L. Gong, “Tailoring light with a digital
micromirror device,” Ann. Phys. 527(7-8), 447–470 (2015).

107. Z.-X. Fang et al., “Interplay between topological phase and self-
acceleration in a vortex symmetric Airy beam,” Opt. Express
26(6), 7324–7335 (2018).

108. Y.-X. Ren et al., “Dynamic generation of Ince–Gaussian modes
with a digital micromirror device,” J. Appl. Phys. 117(13),
133106 (2015).

109. L. Paterson et al., “Controlled rotation of optically trapped micro-
scopic particles,” Science 292(5518), 912–914 (2001).

110. M. P. MacDonald et al., “Creation and manipulation of three-
dimensional optically trapped structrues,” Science 296(5570),
1101–1103 (2002).

111. M. G. Donato et al., “Optical trapping, optical binding, and rota-
tional dynamics of silicon nanowires in counter-propagating
beams,” Nano Lett. 19(1), 342–352 (2018).

112. L.-M. Zhou et al., “Optical levitation of nanodiamonds by
doughnut beams in vacuum,” Laser Photonics Rev. 11(2),
1600284 (2017).

113. Y. Li, L. Zhou, and N. Zhao, “Anomalous motion of a particle
levitated by Laguerre–Gaussian beams,” Opt. Lett. 46(1), 106–
109 (2021).

114. A. Jesacher et al., “Reverse orbiting of microparticles in optical
vortices,” Opt. Lett. 31(19), 2824–2826 (2006).

115. F. G. Mitri, “Reverse orbiting and spinning of a Rayleigh dielec-
tric spheroid in a J0 Bessel optical beam,” J. Opt. Soc. Am. B
34(10), 2169–2178 (2017).

116. K. Diniz et al., “Negative optical torque on a microsphere in
optical tweezers,” Opt. Express 27(5), 5905–5917 (2019).

117. D. Hakobyan and E. Brasselet, “Left-handed optical radiation
torque,” Nat. Photonics 8(8), 610–614 (2014).
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