• Photonics Research
  • Vol. 10, Issue 11, 2488 (2022)
Minjia Chen1, Qixiang Cheng1、*, Masafumi Ayata2, Mark Holm2, and Richard Penty1
Author Affiliations
  • 1Department of Engineering, Centre for Photonic Systems, Electrical Engineering Division, University of Cambridge, Cambridge CB3 0FA, UK
  • 2Huawei Technologies (Sweden) AB, 164 40 Kista, Sweden
  • show less
    DOI: 10.1364/PRJ.468097 Cite this Article Set citation alerts
    Minjia Chen, Qixiang Cheng, Masafumi Ayata, Mark Holm, Richard Penty. Iterative photonic processor for fast complex-valued matrix inversion[J]. Photonics Research, 2022, 10(11): 2488 Copy Citation Text show less
    References

    [1] H. Prabhu, O. Edfors, J. Rodrigues, L. Liu, F. Rusek. Hardware efficient approximative matrix inversion for linear pre-coding in massive MIMO. IEEE International Symposium on Circuits and Systems (ISCAS), 1700-1703(2014).

    [2] F. A. Monteiro, F. Rosário, A. Rodrigues. Fast matrix inversion updates for massive MIMO detection and precoding. IEEE Signal Process. Lett., 23, 75-79(2016).

    [3] C. Tang, C. Liu, L. Yuan, Z. Xing. High precision low complexity matrix inversion based on Newton iteration for data detection in the massive MIMO. IEEE Commun. Lett., 20, 490-493(2016).

    [4] C. Zhang, X. Liang, Z. Wu, F. Wang, S. Zhang, Z. Zhang, X. You. On the low-complexity, hardware-friendly tridiagonal matrix inversion for correlated massive MIMO systems. IEEE Trans. Veh. Technol., 68, 6272-6285(2019).

    [5] S. Hashima, O. Muta. Fast matrix inversion methods based on Chebyshev and Newton iterations for zero forcing precoding in massive MIMO systems. EURASIP J. Wireless Commun. Netw., 2020, 34(2020).

    [6] X.-W. Zhang, L. Zuo, M. Li, J.-X. Guo. High-throughput FPGA implementation of matrix inversion for control systems. IEEE Trans. Ind. Electron., 68, 6205-6216(2021).

    [7] B. Fischer, J. Modersitzki. Fast inversion of matrices arising in image processing,”(1999).

    [8] D. F. G. Coelho, R. J. Cintra, A. C. Frery, V. S. Dimitrovc. Fast matrix inversion and determinant computation for polarimetric synthetic aperture radar. Comput. Geosci., 119, 109-114(2018).

    [9] D. S. Watkins. Fundamentals of Matrix Computations(2002).

    [10] J.-M. Muller. Handbook of Floating-Point Arithmetic(2018).

    [11] H. Zhang, M. Gu, X. D. Jiang, J. Thompson, H. Cai, S. Paesani, R. Santagati, A. Laing, Y. Zhang, M. H. Yung, Y. Z. Shi, F. K. Muhammad, G. Q. Lo, X. S. Luo, B. Dong, D. L. Kwong, L. C. Kwek, A. Q. Liu. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).

    [12] Q. Cheng, J. Kwon, M. Glick, M. Bahadori, L. Carloni, K. Bergman. Silicon photonics codesign for deep learning. Proc. IEEE, 108, 1261-1282(2020).

    [13] R. Athale, D. Psaltis. Optical computing: past and future. Opt. Photon. News, 27, 32-39(2016).

    [14] H. Rajbenbach, Y. Fainman, S. H. Lee. Optical implementation of an iterative algorithm for matrix inversion. Appl. Opt., 26, 1024-1031(1987).

    [15] K. Wu, C. Soci, P. P. Shum, N. I. Zheludev. Computing matrix inversion with optical networks. Opt. Express, 22, 295-304(2014).

    [16] D. Thomson, A. Zilkie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D.-X. Xu, F. Boeuf, O. Peter, B. G. Mashanovich, M. Nedeljkovic. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [17] D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, C. Roeloffzen. Silicon nitride in silicon photonics. Proc. IEEE, 106, 2209-2231(2018).

    [18] A. Y. Liu, J. Bowers. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron., 24, 6000412(2018).

    [19] M. Smit, K. Williams, J. van der Tol. Past, present, and future of InP-based photonic integration. APL Photon., 4, 050901(2019).

    [20] J. Zhang, G. Muliuk, J. Juvert, S. Kumari, S. Kumari, J. Goyvaerts, B. Haq, C. Op de Beeck, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Lepage, P. Verheyen, J. Van Campenhout, A. Gocalinska, J. O’Callaghan, E. Pelucchi, K. Thomas, B. Corbett, A. J. Trindade, G. Roelkens. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photon., 4, 110803(2019).

    [21] J. M. Ramirez. III-V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 26, 6100213(2020).

    [22] . Barata and Hussein—2012—the Moore–Penrose pseudoinverse a tutorial review.pdf(2021).

    [23] X. Li, S. Wang, Y. Cai. Tutorial: complexity analysis of singular value decomposition and its variants(2019).

    [24] . An introduction to the conjugate gradient method without the agonizing pain(2021).

    [25] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations(1994).

    [26] Y. Saad. Iterative Methods for Sparse Linear Systems(2003).

    [27] T. Alexoudi, G. T. Kanellos, N. Pleros. Optical RAM and integrated optical memories: a survey. Light Sci. Appl., 9, 91(2020).

    [28] . Spectral grids for WDM applications: DWDM frequency grid(2021).

    [29] A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben. Wavelength independent multimode interference coupler. Opt. Express, 21, 7033-7040(2013).

    [30] D.-X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, S. K. Selvaraja. Silicon photonic integration platform—have we found the sweet spot?. IEEE J. Sel. Top. Quantum Electron., 20, 198-205(2014).

    [31] K. Wörhoff, R. G. Heideman, A. Leinse, M. Hoekman. TriPleX: a versatile dielectric photonic platform. Adv. Opt. Technol., 4, 189-207(2015).

    [32] . III-V/Si photonics by die-to-wafer bonding | Elsevier enhanced reader(2021).

    [33] T. Matsumoto, T. Kurahashi, R. Konoike, K. Suzuki, K. Tanizawa, A. Uetake, K. Takabayashi, K. Ikeda, H. Kawashima, S. Akiyama, S. Sekiguchi. Hybrid-integration of SOA on silicon photonics platform based on flip-chip bonding. J. Lightwave Technol., 37, 307-313(2019).

    [34] Y. Jiao, J. van der Tol, V. Pogoretskii, J. van Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore. Indium phosphide membrane nanophotonic integrated circuits on silicon. Phys. Status Solidi A, 217, 1900606(2020).

    [35] D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, D. Plant. Silicon photonic segmented modulator-based electro-optic DAC for 100 Gb/s PAM-4 generation. IEEE Photon. Technol. Lett., 27, 2433-2436(2015).

    [36] B. Haq, S. Kumari, K. Van Gasse, J. Zhang, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens. Micro-transfer-printed III-V-on-silicon C-band semiconductor optical amplifiers. Laser Photon. Rev., 14, 1900364(2020).

    [37] C. Op de Beeck, B. Haq, L. Elsinger, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens, B. Kuyken. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386-393(2020).

    [38] Y. Jiao, D. Heiss, L. Shen, S. P. Bhat, M. K. Smit, J. J. G. M. van der Tol. Design and fabrication technology for a twin-guide SOA concept on InP membranes. Proceedings of the 17th European Conference on Integrated Optics and Technical Exhibition, 19th Microoptics Conference (ECIO-MOC), P030(2014).

    [39] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, J. S. Vetter. NVIDIA tensor core programmability, performance amp; precision. IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 522-531(2018).

    [40] . CPU frequency overclocking records @ HWBOT. HWBOT(2021).

    [41] . VideoCardz(2021). https://videocardz.com/amd/radeon-rx-6000/radeon-rx-6900-xt

    [42] . Virtex-6 family overview (DS150)(2015).

    [43] S. Mauthe, Y. Baumgartner, M. Sousa, Q. Ding, M. D. Rossell, A. Schenk, L. Czornomaz, K. E. Moselund. High-speed III-V nanowire photodetector monolithically integrated on Si. Nat. Commun., 11, 4565(2020).

    [44] T. Kojima, H. Kiuchi, K. Uemizu, Y. Uzawa, M. Kroug, A. Gonzalez, T. Dippon, T. Kageura. Demonstration of a wideband submillimeter-wave low-noise receiver with 4–21 GHz IF output digitized by a high-speed 32 GSps ADC. Astron. Astrophys., 640, L9(2020).

    [45] J. R. Vaskasi, N. Singh, J. Van Kerrebrouck, J. Bauwelinck, G. Roelkens, G. Morthier. High wall-plug efficiency and narrow linewidth III-V-on-silicon C-band DFB laser diodes. Opt. Express, 30, 27983-27992(2022).

    [46] Q. Fang, J. Song, T. Liow, H. Cai, M. Yu, G. Lo, D. Kwong. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photon. Technol. Lett., 23, 525-527(2011).

    [47] O. Aiello, P. Crovetti, M. Bruno. Standard cell-based ultra-compact DACs in 40-nm CMOS. IEEE Access, 7, 126479(2019).

    [48] P. Bisiaux. A 14-bit 250 kS/s two-step inverter-based incremental ΣΔADC for CMOS image sensor in 0.18 μm technology. Analog Integr. Circ. Sig. Process., 97, 427-435(2018).

    [49] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465-476(2017).

    [50] . TOP500(2022). https://www.top500.org/lists/green500/2022/06/

    [51] M. A. Nahmias, T. F. De Lima, A. N. Tait, H. T. Peng, B. J. Shastri, P. R. Prucnal. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 7701518(2020).

    [52] K. Morito, S. Tanaka, S. Tomabechi, A. Kuramata. A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure. IEEE Photon. Technol. Lett., 17, 974-976(2005).

    [53] N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, C. Galland. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express, 22, 10487-10493(2014).

    [54] A. Gondarenko, J. S. Levy, M. Lipson. High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express, 17, 11366-11370(2009).

    [55] Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg. Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Express, 21, 29374-29382(2013).

    Minjia Chen, Qixiang Cheng, Masafumi Ayata, Mark Holm, Richard Penty. Iterative photonic processor for fast complex-valued matrix inversion[J]. Photonics Research, 2022, 10(11): 2488
    Download Citation