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An N × N iterative photonic processor is proposed for the first time, we believe, for fast computation of complex-
valued matrix inversion, a fundamental but computationally expensive linear algebra operation. Compared to
traditional digital electronic processing, optical signal processing has a few unparalleled features that could enable
higher representational efficiency and faster computing speed. The proposed processor is based on photonic in-
tegration platforms–the inclusion of III-V gain blocks offers net neutral loss in the phase-sensitive loops. This is
essential for the Richardson iteration method that is adopted in this paper for complex linear systems. Wavelength
multiplexing can be used to significantly improve the processing efficiency, allowing the computation of multiple
columns of the inverse matrix using a single processor core. Performances of the key building blocks are modeled
and simulated, followed by a system-level analysis, which serves as a guideline for designing an N × N Richardson
iteration processor. An inversion accuracy of >98% can be predicted for a 64 × 64 photonic processor with a >80
times faster inversion rate than electronic processors. Including the power consumed by both active components
and electronic circuits, the power efficiency of the proposed processor is estimated to be over an order of
magnitude more energy-efficient than electronic processors. The proposed iterative photonic integrated processor
provides a promising solution for future optical signal processing systems. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.468097

1. INTRODUCTION

Complex-valued matrix inversion is a fundamental but compu-
tationally expensive linear algebra operation, which is widely
used in wireless communication systems [1–5], control systems
[6], image processing [7,8], for solving partial differential equa-
tions [9], and in many other applications. Complex-valued
arithmetic is preferred in many applications due to its better
performance compared to real-valued calculations in terms
of representational capacity, convergence speed, generalization,
and noise robustness [10,11].

Two main advantages of optical matrix computations over
traditional digital electronic computations include higher rep-
resentational efficiency and faster processing speed [12]. First,
the real and imaginary parts of one complex-valued number are
stored in two registers on traditional electronic computing plat-
forms, with calculations being carried out for real and imagi-
nary parts, respectively. In contrast, an optical signal inherently
has two dimensions to encode the real and imaginary parts,
which are its amplitude and phase. Second, optical matrix
computation allows faster processing speeds through inherent
high-speed optical processing. The speeds of digital electronic
processors are limited by the transistors’ switching time and
time for storing, fetching, and moving intermediate computing

results, while the speed of optical matrix computation is solely
determined by the signal propagation time in the processor.
Photonic integration platforms guarantee ultrafast computing
speed due to their ultracompact millimeter-level optical path
length. In addition, intermediate computing results can be di-
rectly sent to the succeeding components without storing and
fetching. In other words, the computation is completed during
light propagation.

Optical computing has a long history that dates back to the
1980s [13]. Optical systems for real-valued matrix inversion
have been implemented using both free-space optics [14] and
fiber-optic networks [15]. Though free-space optical systems
have good scalability, the bulky system and high alignment
requirements pose big obstacles for practical usage and lead
to higher latency than more compact integrated solutions.
Fiber-optic systems have large phase fluctuations, making them
unsuitable for complex-valued computations. In contrast, pho-
tonic integrated platforms provide ultracompact designs and
accurate phase control [16–21], which enable the implemen-
tation of scalable optical networks for complex-valued matrix
inversion.

In this paper, we propose an N × N photonic integrated
Richardson iteration processor (RIP) for fast computation of
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complex-valued matrix inversion and a “Min-Max” algorithm
for choosing the optimal parameter for the Richardson (RICH)
method for the highest convergence rate, the first time this has
been proposed to our knowledge. We also build mathematical
models for key building blocks and predict both block-level and
system-level performances, which can be used as guidelines for
designing an N × N RIP.

The paper is organized as follows. Section 2 reviews the ma-
jor matrix inversion methods and presents the Min-Max algo-
rithm. Section 3 shows the system architecture of the proposed
RIP and the detailed mathematical models of key blocks.
Implementations on integrated photonic platforms are also
compared. Section 4 presents system-level performance analy-
ses, including speed, power efficiency, accuracy, and scalability
based on the models built in Section 3, which can be used as
guidelines for choosing input signal powers and bandwidths
(BWs) of optical bandpass filters (BPFs) when designing an
N × N processor. Section 5 concludes the paper.

2. INVERSION METHODS

Choosing an appropriate computing method is the first con-
cern when we start to build up an optical matrix inverter.
In this section, we review two major types of inversion meth-
ods, and introduce the Min-Max algorithm for implementing
the RICH method in our design.

A. Review of Inversion Methods
In a broad sense, every matrix has its inverse matrix, which is
called a generalized inverse or a pseudoinverse [22]. In this pa-
per, we focus on computing the inverses of nonsingular (invert-
ible) square matrices. For a nonsingular matrix A ∈ CN×N (A is
a matrix with N rows and N columns of complex-valued
elements), the unique inverse matrix A−1 is defined by
AA−1 � A−1A � IN , where IN is the N × N identity matrix
with ones on the main diagonal and zeros elsewhere.

Calculating the inverse matrix A−1 is equivalent to solvingN
linear equations, Axi � ei (i � 1, 2,…,N ), where xi is the ith
column of the inverse matrix A−1, and ei is the ith column of
the identity matrix IN . Furthermore, matrix inversion methods
can be classified into direct inversion methods and iterative in-
version methods [9].

Direct inversion methods are based on the decomposition of
the original matrix A. Gaussian elimination (GE), lower-upper
decomposition (LUD), Cholesky decomposition (CD), and
QR decomposition (QRD) all convert A into an upper or lower
triangular form, U or L, and use back or forward substitution
to serially compute the inversion results. Singular value decom-
position (SVD) decomposes A into two unitary matrices P, Q ,
and one diagonal matrix with nonnegative real elements Σ, tak-
ing advantage of the facts that the inverse of a unitary matrix is
its conjugate transpose, and the inverse of a diagonal matrix
consists of reciprocals of its elements. Table 1 summarizes main
direct inversion methods mentioned above for nonsingular ma-
trices [9,23]. The time complexity shown in Table 1 refers to
the complexity for solving all N equations. Time complexity
depicts how the computing time scales with the matrix size,
which is usually measured by floating-point operations per sec-
ond (FLOP/s), since traditionally matrix inversion is computed

on digital electronic computers. Though special matrices (such
as sparse matrices) require fewer FLOP/s to compute, time
complexity without any acceleration is shown here for general-
ity. As shown in Table 1, direct methods all have a time com-
plexity of ∼O�N 3�.

Iterative inversion methods compute the inverse matrix by
first choosing an approximate initial guess and then updating it
in each iteration until it converges. The uniqueness of inverse
matrix guarantees the process always converges to the correct
solution if the convergence condition is satisfied. Specifically,
a solution sequence x�0�, x�1�,…, x�k� is generated in order
to solve Ax � e. The iterative relationship is expressed as
x�k�1� � Mx�k� � f , which converges to x� � Mx� � f if
∥M∥ < 1, where x� is the ideal solution, and ∥ · ∥ denotes
the 2-norm of the matrix. In principle, accurate solutions
can be reached after infinite numbers of iterations, while in
practice, the iterative process stops after the deviation from
the ideal solution is smaller than pre-set values. Iterative inver-
sion methods include classical methods such as Jacobi (JC),
Gauss–Seidel (GS), successive overrelaxation (SOR) and
RICH, and gradient descent methods such as steepest descent
(SD) and conjugate gradient (CG). Table 2 summarizes main
iterative methods [9,24–26]. The total computing time de-
pends on both the complexity and the convergence rate.
The ∼O�N 3� time complexity shown in Table 2 denotes com-
puting time for each iteration without any acceleration, which
is essentially the computing time of a matrix–matrix multipli-
cation. The convergence rate, representing the number of iter-
ations for convergence, depends on the inversion method, the
initial guess, x�0�, and the required accuracy.

In general, direct inversion methods provide more robust
solutions in linear systems than iterative inversion methods.
Nevertheless, a good initial guess and the use of precondition-
ing (a means of transforming the original linear equations into
one with the same solutions but that is easier to solve) in iter-
ative methods allow for faster computing speed than direct
methods, which is especially advantageous for large sparse
systems.

Table 1. Summary of Main Direct Inversion Methods

Method Constraints on A Key Steps Complexity

GE None 1) Ax � e → Ux � y
2) Back substitution

∼O�N 3�

LUD None 1) A � LU
2) Ux � y, Ly � b
3) Forward substitution: y
4) Back substitution: x

∼O�N 3�

CD Positive definite 1) A � U �U
2) Ux � y, U �y � b
3) Forward substitution: y
4) Back substitution: x

∼O�N 3�

QRD None 1) A � QR
2) Rx � y, Qy � b
3) y � Q�b
4) Back substitution

∼O�N 3�

SVD None 1) A � PΣQ�

2) A−1 � QΣ−1P�
∼O�N 3�
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B. Richardson’s Method and Min-Max Algorithm
The matrix-form Richardson’s method (the matrix-form RICH
method) is shown in Eq. (1),

X �k�1� � �IN − ωoptA�X �k� � ωoptI N : (1)

It is chosen for optical matrix inversion mainly for its easy
implementation on integrated photonic platforms. A lack of
mature on-chip optical memory [27] restricts the inversion
methods to classical iterative methods, since both direct meth-
ods and gradient descent methods require storage of intermedi-
ate results, while for classical iterative methods, outputs can be
easily sent back to inputs through waveguides for iterative com-
putations. Among all the classical iterative methods, the RICH
method has the simplest form and the fewest constraints, jus-
tifying its usage in computing matrix inverses. To implement
the weight matrix M � IN − ωoptA in the RICH method op-
tically, we can either use Mach–Zehnder interferometer (MZI)
arrays to encode the matrix elements directly or use cascaded
MZI meshes to encode the SVD of the weight matrix. Here we
choose to use MZI arrays to encode the elements directly to
avoid the heavy overhead introduced by SVD.

In the general iterative relationship, x�k�1� � Mx�k� � f ,
the convergence is guaranteed when the spectral radius
ρ�M � satisfies ρ�M � < 1 [ρ�M � � maxλ∈σ�M �jλj, σ�M � is the
collection of all the eigenvalues of matrixM ]. The convergence

rate, τ � −ln�ρ�M ��, is also determined by the spectral radius.
As in the case of the RICH method, the convergence condition
is ρ�IN − ωA� < 1, and the convergence rate is τ �
− ln�ρ�IN − ωA��. As long as all the eigenvalues of A lie in
a half-complex plane, there exists a damping parameter ω such
that the RICH method converges. We propose a Min-Max al-
gorithm to compute the optimal ω corresponding to the fastest
convergence rate. The basic idea is to scale the eigenvalues of
matrix A up or down into a unit circle centred at (1,0) on the
complex plane and minimize the maximal distance of an eigen-
value to the point (1,0). A graphical explanation is shown
in Fig. 1.

3. PHOTONIC DESIGN

This section consists of three parts. In part A, the system ar-
chitecture of the proposed RIP is introduced. In part B, the
mathematical modeling of key building blocks in the iterative
photonic processor is presented. In part C, photonic integration
schemes of the iterative photonic processor are discussed and
compared.

A. System Architecture
Figure 2(a) illustrates the workflow of the proposed iterative
processing system. The computation includes four main steps:

Table 2. Summary of Main Iterative Inversion Methods

Method
Convergence
Condition Iterative Relationship Complexity Convergence Rate

JC Positive definite x�k�1� � �I N −D−1A�x�k� �D−1e ∼O�N 3� Slow
GS Positive definite x�k�1� � �I N − �D − E�−1A�x�k� � �D − E�−1e ∼O�N 3� Faster than JC
SOR Positive definite,

0 < ω < 2
x�k�1� � �I N − ω�D − ωE�−1A�x�k� � ω�D − ωE�−1e ∼O�N 3� ω > 1: accelerate; ω � 1: GS;

ω < 1: slow down
RICH Eigenvalues lie

in a half-complex
plane

x�k�1� � �I N − ωA�x�k� � ωe ∼O�N 3� Depend on the choice of ω

SD Positive definite 1) r�0� � e − Ax�0� 2) p�k� � r�k�

3) αk � p�k�T r�k�

p�k�T Ap�k� 4) x
�k�1� � x�k� � αkp�k�

5) r�k�1� � r�k� − αkAp�k�

∼O�N 3� As slow as JC
Be accelerated with preconditioning

CG Positive definite 1) r�0� � e − Ax�0� 2) p�0� � r�0�

3) αk � r�k�T r�k�
p�k�T Ap�k� 4) x

�k�1� � x�k� � αkp�k�

5) r�k�1� � r�k� − αkAp�k� 6) βk � r�k�1�T r�k�1�
r�k�T r�k�

7) p�k�1� � r�k�1� � βkp�k�

∼O�N 3� Slightly faster than steepest
descent
Faster than SOR
with preconditioning

Fig. 1. Graphical explanation of the Min-Max algorithm for a 4 × 4 processor. Eigenvalues represented by circles in (a)–(d) correspond to colors.
(a) Eigenvalues of A shown in the polar coordinate system (all the eigenvalues lie in a half-complex plane, indicating the RICHmethod converges for
a certain ω); (b) rotate all the eigenvalues of A into the right half-plane; (c) eigenvalues of ωoptA; (d) eigenvalues of IN − ωoptA. Now the convergence
condition ρ�IN − ωoptA� < 1 is satisfied and the fastest convergence rate is also reached.
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1) Weights loading: a preprocessed matrix M � IN − ωoptA is
loaded into the iterative processor by an array of voltage digital-
to-analog converters (VDACs). Optimal ω is precalculated in
the electronic peripherals according to the Min-Max algorithm.
2) Gain setting: the gains of semiconductor optical amplifiers
(SOAs) are set by an array of current DACs (IDACs). SOAs are
used to compensate for on-chip optical losses, ensuring lossless
computations. 3) Computation activation: laser signals with
frequencies ranging from f 1 to f N are sent to N inputs of
the iterative processor, corresponding to an initial guess,
X �0� � 0, and an initial input to the processor, ωoptIN . The
calculated ωopt can be loaded into the processor by adjusting
the laser power. The gain variations among different wave-
length channels are equalized through adjusting laser powers.
During the computation, each frequency corresponds to one
column of the computation results. 4) Results readout: the
optical inversion results are converted to electrical signals by
coherent detection when the computation reaches its conver-
gence. The electrical signals are then amplified by N arrays of
transimpedance amplifiers (TIAs) and sampled by N arrays of

analog-to-digital converters (ADCs). Each ADC array contains
2N ADCs for the sampling of one row of the inversion results,
which are then postprocessed to obtain the final inversion re-
sults. Figure 2(b) shows the detailed architecture of an N × N
iterative photonic processor, which is the core part of the
processing system in Fig. 2(a). The correspondence between
key photonic blocks and their computational functionalities
is summarized in Table 3.

B. Modeling
This part introduces the modeling of the iterative system in
detail, serving as a preliminary for the system performance
analyses in Section 4. Figure 3 shows the models of key build-
ing blocks, whose operational principles are characterized by
mathematical formulas shown in the following [transverse-elec-
tric (TE) mode is assumed in the modeling].

1. Input Vectors Fan-Out Block
Figure 3(a) shows the model of a 1-to-N Input Vectors Fan-out
block which consists of dlog2N e stages of cascaded 50:50 1 × 2
MMI (multimode interference) couplers. The insertion loss

Fig. 2. System architecture of the proposed N×N iterative photonic processor for complex-valued matrix inversion. (a) Workflow of the iterative
photonic processing system. The computation includes four main steps: 1) weights loading; 2) gain setting; 3) computation activation; and 4) results
readout. VDAC, voltage digital-to-analog converter; IDAC, current digital-to-analog converter. (b) Architecture of an N ×N iterative photonic
processor. It consists of nine key photonic blocks, including Laser, Summation 1, Input Vectors Fan-Out, Weight Bank, Summation 2, Amplification,
Filtering, Detection, and Recirculating Loop. AWG, arrayed waveguide gratings.
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(IL) of each MMI coupler is assumed to be α (in dB). E i and
E o1 − E oN represent the electric fields of the input signal and
output signals, respectively. The output electric fields can be
expressed by Eq. (2),

E oq � 10−
α·dlog2N e

20 ·
�

1ffiffiffi
2

p
�dlog2N e

E i, q � 1, 2,…,N :

(2)

The absolute phase shift introduced during propagation is
neglected in this model, since it can always be compensated by
phase shifters. Only relative phase changes affect the encoded
phase information. For a wavelength range of around 20 nm,
which is enough to support 200 channels assuming a frequency
spacing of 0.1 nm (according to the narrowest spectral grid of
the ITU standard for dense wavelength division multiplexing
technology [28]),<1% non-ideal coupling ratio and<1° phase
deviation are reported over the entire BW [29]. The small

deviations can be compensated by adjusting the amplitude and
phase of the MZI unit on the corresponding path. Thus,
non-ideal coupling is neglected in the model.

2. Summation Block
Figure 3(b) shows the model of the Summation block, which
consists of cascaded 50:50 2×1 MMI combiners. Summation 1
block in Fig. 2(b) is the simplest form, with only one stage,
while Summation 2 block is a general form with log2N stages
that adds up N optical signals according to Eq. (3), where α
(dB) is the IL of an MMI coupler. Non-ideal coupling is ne-
glected in this model, since it can be compensated in theWeight
Bank block,

E o � 10−
α·dlog2N e

20 ·
�

j ffiffiffi
2

p
�dlog2N e XN

q�1

E iq, q � 1, 2,…,N :

(3)

Table 3. Correspondence between Key Photonic Blocks and Computational Functionalities

Photonic Blocks Components Functionality

Laser CW LDs Input signal
Summation 1 Single-stage 50:50 2 × 2∕1 × 2 MMI coupler 1) Couple initial input; 2) add ωIN in each iteration
Input Vectors Fan-out Cascaded 50:50 1 × 2 MMI couplers Split looped-back signals
Weight Bank Push-pull MZIs Encode elements of complex-valued matrix M
Summation 2 Cascaded 50:50 2 × 2∕1 × 2 MMI couplers Add signals up during matrix multiplication MX �k�

Amplification Cascaded SOAs Compensate for on-chip losses
Filtering AWGs and BPFs Reduce the ASE noise from SOAs
Detection Coherent detectors Inversion results readout
Recirculating Loop Phase-sensitive waveguides Provide connections for iterative computation

Fig. 3. Models of (a) 1-to-N Fan-Out block, (b) Summation block, (c) Weight Bank block, (d) Laser block, (e) Amplification and Filtering blocks,
(f ) Detection block, and (g) electronic peripherals.
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The 2 × 1 MMI combiners can be replaced with 2 × 2
MMI couplers with one output port configured as the monitor
port for calibrating input phases, as shown in Fig. 2(b). Phase
matching is required for both 2 × 1 and 2 × 2 MMI couplers
when configured as adders. For 2 × 1MMI couplers, the phase
of the two input signals should be equal, while for 2 × 2 MMI
couplers, the phase difference between the two inputs should
equal 90º. The phase relationship between stage p
(1 ≤ p ≤ dlog2N e − 1) and p� 1 of 2 × 2MMI couplers is ex-
pressed in Eq. (4),

φp
q

�

8>><
>>:

φp�1
q , q� 1,2,…,2dlog2N e−1,

jφp�1
q , q� 2dlog2N e,2dlog2N e �1,…,N

1 �q� 1� or j �q� 2�, p�dlog2N e,
,

(4)

where φp
q represents the signal phase of the qth input at stage p.

Note that for Summation 1 block in each of the “N Adding
Sections,” only the amplified signal whose frequency matches
the laser frequency is required to satisfy the phase-matching
condition, while amplified signals at other frequencies simply
go through a power-splitting process since in each iteration, the
addition of ωoptI N in Eq. (1) is effective for only one element
in each column. The phase-matching condition can be satisfied
by applying a phase tuner between the laser and the input of the
MMI coupler in Summation 1.

3. Weight Bank Block
Figure 3(c) shows the model of a single MZI unit of theWeight
Bank block, since all the MZI units are functionally equivalent
during computation. The MZI consists of two 50:50 1 × 2
MMI couplers and two phase shifters. Thermo-optic phase
shifters (TOPSs) are used as an example in the modeling. A
faster reconfiguration rate can be achieved using electro-optic
phase shifters. The induced phase changes in two arms are
determined by the applied voltage V 1 and V 2, according to
Eq. (5),

Δϕq�f � � π
V 2

q

V 2
π�f �

� 2πf
c

·
dn
dT

· ΔT · L, q � 1, 2, (5)

where dn
dT is the thermo-optic (TO) coefficient of the waveguide

material, ΔT is the temperature change due to the applied
power, L is the length of phase shifters, and c is the speed
of light in vacuum. The propagation loss in the waveguide
of an MZI is mainly the propagation loss of two MMI couplers,
which is 2α (in dB) according to the definition in Summation 2
block. The amplitude and phase of a complex-valued weight
element, mij, are encoded by the amplitude and phase
differences between output and input electric fields as shown
in
Eqs. (6a), (6b),

jmijj �
jE oj
jE ij

� 10−
2α
20j cos�Δφ�f ��j, (6a)

arg�mij� � arg�E o� − arg�E i� � φ0�f �: (6b)

The compensation of the non-ideal coupling mentioned in
Sections 1 and 2 can be realized by tuning the amplitudes and
phases of the MZI weights on corresponding paths.

4. Laser Block
Figure 3(d) shows the model of a continuous-wave (CW) laser
source. N lasers are used to generate signals with frequencies
ranging from f 1 to f N . A higher wall-plug efficiency helps to
reduce the power consumption of laser sources. The finite laser
linewidth, Δυ, is reflected in a randomly fluctuated phase term,
θ�t�, in the generated laser signal, as shown in Eq. (7),

E o � A0ej�2πf t�φ0�θ�t��: (7)

The input signal power, P in � A2
0, serves as a normalization

power (real-valued unit “1”) for the matrix computation. Laser
phase noise normally causes unstable interference when two sig-
nals are combined in a summation block. This can be resolved
by using a single laser block at each frequency point and split-
ting the laser signals for homodyne detection as explained in
Section 6.

5. Amplification and Filtering Blocks
Figure 3(e) shows the model of the Amplification block together
with the Filtering block for one wavelength channel. A cascaded
SOA structure is used to reduce the signal power variations and
avoid unwanted noise caused by nonlinear effects such as four-
wave mixing, cross-gain modulation, and cross-phase modula-
tion. Filters are placed after each SOA stage to reduce the ASE
(amplified spontaneous emission) noise. Though the amplitude
of the signal is dynamic among different iterations, they can be
treated as DC signals by the optical BPFs within each iteration.
The optical filter BW is thus not a limiting factor to the high
data updating rate during multiple iterations. Figure 4(a) shows
the ideal amplitude changes during computation without filter-
ing, which can be expressed by Eq. (8), where T 0 is the am-
plitude updating period (time for signals to propagate in one
iteration), and a0, a1,…, ak are the amplitudes in the 1st, 2nd,
… and kth iteration, respectively,

f �t� � a0u�t� �
Xk−1
i�0

�ai�1 − ai�u�t − iT 0�: (8)

By removing the optical carrier frequency, the spectrum
analysis can be shifted to baseband, which simplifies the
Fourier analysis.

The baseband spectrum of the signal is shown in Eq. (9),

F �ω� � a0

�
πδ�ω� � 1

jω

�

�
Xk−1
i�0

�ai�1 − ai�
�
πδ�ω� � 1

jω

�
e−jωiT 0 : (9)

An optical BW of 2W (Hz) is equivalent to a baseband BW
of W (Hz). The filter filters out part of the signal frequency
components introduced by the abrupt amplitude changes
among different iterations while keeping the DC components
intact. The mth term in Eq. (9) corresponds to a DC term
with an amplitude of am∕2 and a small variation term from
− Si�2πWT 0�

π
�am−am−1�

2 at mT 0 to
Si�2πWT 0�

π
�am−am−1�

2 at �m� 1�T 0,
where Si�x� is the sine integral function, as shown in Fig. 4(b).
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When the filter BW W is very narrow (∼MHz) compared to
the updating period T 0 (∼ns), the variation term is close to 0,
leaving the DC term only. Otherwise, the filtered signal ampli-
tude increases gradually in each iteration, which looks similar to
what is shown in red in Fig. 4(c). The red line crosses half of the
DC values in each iteration, which can be used to extract the
inversion results by multiplying a scaling factor. In this sense,
the optical filter treats the signal as a DC signal within each
iteration and solely suppresses out-of-band ASE noises.

Note that propagation through the BPF in multiple itera-
tions is equivalent to cascading multiple BPFs, leading to
the BW narrow-down effect. Assuming a Lorentzian spectral
shape and a single-stage 3 dB filter BW of B0 (Hz), the
effective 3 dB filter BW after k (k ≥ 1) stages is Bk �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21∕k − 1

p
· B0. The arrayed waveguide gratings (AWGs) are

modeled as ILs, which are included in the IL of BPFs. The
single-stage ASE noise after a BPF and the total ASE noise power
after k stages of SOAs and BPFs are shown in Eqs. (10a),
(10b). β (dB) is the IL of a BPF. G (dB) and NF (dB) are the
gain and noise figures of a single-stage SOA. h is the Planck con-
stant. f is the signal frequency. The ASE noise is expressed as a
complex-valued signal nASE � nr � jni. The real and imaginary
parts nr and ni independently obey Gaussian distribution as
∼N �0, σ2�, where σ2 � 1

2 σ
2
ASE � 1

2PASE. The output signal
considering ASE noise is shown in Eq. (11). φSOA and φBPF

are extra phase shift introduced by each SOA and BPF stage,

PASE1 � 10
NF
10hf �10G

10 − 1�, (10a)

PASEk � 10
NF
10hf �10G

10 − 1� ·
�Xk−1

s�0

10
sG
10 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1
s�1 − 1

p �
B1,

(10b)

E o � 10
k�G−β�

20 ejk�φSOA�φBPF�E i � nASE: (11)

6. Detection Block
Figure 3(f ) shows the model of one unit of the Detection block,
which extracts both real and imaginary parts of the computing
results by homodyne detection. The computed signal and the
reference split from the laser in the homodyne detection are
assumed to be E sig � A1ej�2πf 1t�φ1�θ�t��, and E ref �
A2ej�2πf 1t�φ2�θ�t��, respectively [θ�t� is the laser phase noise].
The differential photocurrents containing real and imaginary
parts of the computation results are shown in Eqs. (12a), (12b).

I 1 − I 4 are photocurrents of the four photodiodes (PDs),
ishot1 − ishot4 are shot noise currents of the photodiodes, and
R � e∕�hf � is the responsivity of the PDs (e is the electron
charge; the quantum efficiency is assumed to be 1). The effects
of shot noise are modeled in Eqs. (13a), (13b). Be is the BW of
the low-pass electrical filter in the sampling circuits placed after
balanced PDs, which is used to filter out the unwanted high-
frequency components. In practice, the electronic filters are
only used for output readout at convergence (corresponding
to DC signals), instead of capturing its entire temporal trace,
allowing the use of a narrow BPF. Be is generally matched to be
half of the BW of optical filters,

I 1 − I 2 � RA1A2 cos�φ1 − φ2� � ishot1 − ishot2, (12a)

I 3 − I4 � RA1A2 sin�φ1 − φ2� � ishot3 − ishot4, (12b)

σ2r � σ21 � σ22 � eR�jE sigj2 � jE ref j2�Be , (13a)

σ2i � σ23 � σ24 � eR�jE sigj2 � jE ref j2�Be: (13b)

Another major noise source during detection is the thermal
noise of TIAs after the balanced PDs. Thermal noise power can
be expressed in the current form, as shown in Eq. (14),

i2thermal � 4kTBeR−1, (14)

where k is the Boltzmann constant. T is room temperature. Be
is the BW of the electrical sampling circuits. R is the resistance
of the TIA. The signal-to-noise-ratio (SNR) is expressed in
Eq. (15). Psig � jE sigj2 and Pref � jE ref j2 are optical powers
of the computed signal and the reference signal,

SNR � R2PsigPref

eR�Psig � Pref �Be � 4kTBeR−1 : (15)

7. Electronic Peripherals
Figure 3(g) shows the model of the electronic peripherals, in-
cluding DACs and ADCs. The bit resolutions and the power
consumption of DACs and ADCs are two characteristics that
influence the performances of the photonic RIP. The models
show the conversion of an n-bit digital signal to an analog volt-
age or current signal and the conversion of an analog signal to
an n-bit digital signal. The finite resolutions of DACs and
ADCs lead to the quantization errors in the process of loading
matrix elements to the Weight Bank block and sampling of the

Fig. 4. (a) Typical signal amplitude changes during computation without filtering. (b) Plot of the sine integral function; (c) typical signal am-
plitude changes during computation after filtering.
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computation results from the Detection block, which degrade
the inversion accuracy.

C. Implementations on Photonic Integration
Platforms
Major photonic integration platforms include indium phos-
phide (InP) [19], silicon photonics (SiPh) or silicon-on-insulator
(SOI) [30], and silicon nitride (Si3N4) [31]. InP is capable of
integrating both active and passive components. SiPh is compat-
ible with CMOS fabrication, which saves cost. The high refrac-
tive index contrast in SiPh allows the design to be compact.
The Si3N4 platform provides low propagation losses and a wide
transparency window. Since the proposed design includes both
passive and III-V active components, hybrid integration or het-
eroepitaxy integration is needed for silicon-based platforms to
incorporate active blocks. Hybrid integration methods include
flip-chip bonding, wafer/die bonding, and microtransfer print-
ing (μTP). A comparison of various III-V-on-Si methods is sum-
marized in Table 4 [18,20,32,33]. Albeit current InP platforms
are capable of cointegration of passive and active components,
the relatively low refractive index contrast, high propagation
losses, and the high cost are the limiting factors to the use of
this platform. Recently, the newly developed InP-based plat-
form, InP membrane on silicon (IMOS), has demonstrated a
small footprint by increasing index contrast through the inser-
tion of a low-index buffer layer [34]. It is promising for the im-
plementation of a compact monolithic integrated photonic
processor. Figure 5 shows an example of a 4 × 4 monolithically
integrated RIP, where the laser diodes (LDs), SOAs, and bal-
anced photodetectors (BPDs) are all integrated on-chip.

4. PERFORMANCE ANALYSIS

In this section, numerical methods are used to characterize the
system-level performance of the proposed photonic RIP based
on the models built in Section 3. Four major performance met-
rics, including speed, power efficiency, accuracy, and scalability
are investigated.

A. Speed
Processing speed is determined by the processing time of
the photonic RIP, which consists of three parts: (1) matrix
weights loading time, (2) net computation time, and (3) post-
processing time.

1. Matrix Weights Loading Time
An N × N photonic RIP requires loading N 2 weights to the
MZI units, which can be realized by using multichannel

DACs. Though TOPSs are used in the previous modeling,
high-speed weights loading (∼50 GHz [35]) can be realized
by using electro-optic phase shifters. Once loaded, matrix
weights are kept constant for multiple iterations during the en-
tire computation process.

2. Net Computation Time
The net computation time of the photonic RIP is solely deter-
mined by the signal propagation time in the recirculating loop.
A compact design reduces the propagation time in one itera-
tion, while matrixM , with a smaller spectral radius, guarantees
fewer iterations for convergence. Table 5 summarizes the
estimated length of each block on mainstream photonic inte-
gration platforms for an N × N photonic RIP. The length of
the Laser block is not included, since it can be placed near the
input port of Summation 1 block, which makes the input
propagation time negligible. The length of the Detection block
is not included in the simulation, since it is only used at the
final iteration and is negligible compared to other parts. The
length of the looped-back line is estimated to be the same
as forward propagation length.

The estimated net inversion rate and processing rate are
shown in Figs. 6(a) and 6(b). The inversion rate is measured
by the number of matrix inversions implemented in a second,

Table 4. Comparison of III-V-on-Si Integration Methods

Method
Flip-Chip
Bonding

Wafer/Die
Bonding μTP

Hetero-
epitaxy

Integration density Low Medium High High
Efficiency of III-V
material use

Medium Medium High Very
High

Alignment accuracy High High Hedium High
Throughput Medium High High High
Cost High Medium Low Low
Maturity Mature Mature R&D R&D

Fig. 5. Conceptual figure of an integrated 4 × 4 inverter (without
wavelength multiplexing) where the LDs, BPFs, SOAs, and BPDs
are monolithically integrated on-chip. TIAs and digital signal process-
ing (DSP) are used for results readout. One column of the inverse
matrix can be computed at a time by turning on one of the LDs, while
the complete computation results can be obtained by turning on
each of the LDs, respectively, or using multiple copies of the unit
shown here.

Table 5. Length Estimation of an N × N Iterative
Photonic Processor on Photonic Integration Platforms

Component SOI (μm) Si3N4 (μm) IMOS (μm)

Summation 1 20 240 47
Input Vectors
Fan-out

(2N–1)·72 (2N–1)·180 (2N–1)·80

Weight Bank 100 1100 200
Summation 2 (2N–1)·90 (2N–1)·300 (2N–1)·120
Amplification 2.2 log2N · 176

[36]
2.2 log2N · 246

[37]
2.2 log2N · 63

[38]
Filtering 128 130 200
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which decreases with the matrix size because a larger-sized
processor has a longer loop length and requires more
iterations for convergence. An inversion rate of 3.2 GInv/s
(109 inversions∕s) can be reached for a 2 × 2 processor, whereas
for a 64 × 64 processor, the inversion rate becomes 10.7 MInv/s
(106 inversions∕s). Platforms with a higher refractive index
contrast and effective index enable a higher inversion rate
due to more compact designs.

The photonic processing rate is also shown here as a refer-
ence. It is measured by the number of multiply-accumulated
operations per second [MAC/s, (a 0 ← a� �b × c�, one real-
valued multiplication and one real-valued addition in digital
electronic computers]. For an N × N processor, the proposed
photonic RIP computes MX �k� � ωIN in each iteration,
which is equivalent to around N 3 MAC (extra N additions
for ωIN can be neglected compared to operations in matrix
multiplication). The photonic processing rates, N 3 MAC/s
(time required for a half iteration), are shown in Fig. 6(b).
Though larger-sized processors have a slower inversion rate,
they implement many more operations than smaller-sized ma-
trices. The processing speed increases with the matrix size, with
1.1 TMAC/s (1012 MAC∕s) for 2 × 2 processors and 1.4
PMAC/s (1015 MAC∕s) for 64 × 64 processors. One complex
MAC/s on photonic iterative photonic processor is equivalent
to four real MAC/s on electronic processors, providing >180
times faster rate in terms of FLOP/s (1 real-valued
MAC∕s � 2 FLOP=s) than the 4 × 4 NVIDIA GPU acceler-
ator reported recently [39].

The processing rate of electronic processors is limited by the
internal clock rate. The peak clock frequency for CPU, GPU,
and FPGA are 8.7 [40], 3.2 [41], and 1.6 GHz [42], respec-
tively. Inverting anN × N matrix requires ∼O�N 3� operations,
corresponding to an inversion rate of only around 0.13 MInv/s
for a 64 × 64 electronic processor using the RICH method, in-
dicating the proposed photonic RIP is >80 times faster than
electronic processors.

3. Postprocessing Time
Coherent detection together with postprocessing is imple-
mented once at the final iteration. The speeds of PDs and
ADCs need to satisfy the highest inversion rate shown in
Fig. 6(a) (3.2 GHz), which is not a limiting factor since

high-speed PDs (32 Gb/s [43]) and ADCs (32 GSPS [44]) have
been demonstrated.

B. Power Efficiency
Power consumption in the proposed photonic processor mainly
comes from the active components, including lasers, TOPSs
and SOAs, and electronic peripheral circuits. Table 6 summa-
rizes the required numbers of power-consuming components
for an N × N processor and their typical power consumption.
While TOPSs are used in the analysis, their power efficiency
can be further improved by using nonvolatile materials [49].
The number of SOA stages, x, is further explored in Fig. 7(g).
The simulated power efficiency of an N × N iterative photonic
processor is shown in Fig. 6(c), which is defined by power (W)/
(MAC/s). It is worth noting that, while the total power con-
sumed by larger-sized processors is higher, their larger number
of operations evidently lowers the overall power efficiency. The
power efficiency of 2 × 2 to 64 × 64 processors is estimated to
be 0.53, 0.81, 1.07, 1.48, 1.72, and 1.62 pJ/MAC, respec-
tively. Compared with the state-of-the-art electronic processor
that features 31.9 pJ/MAC [50], the proposed photonic solu-
tion can easily be over 10 times more energy-efficient.

C. Accuracy
Inversion accuracy measures how accurate the computed
matrix inverse is for the iterative photonic processor, which
is defined as 1 − ε, where ε is the relative error given as ε�
�jjY sim −Y idealjj∕jjY idealjj�×100% (Y sim is the simulated in-
version results, and Y ideal is the theoretical inversion results).
Three key error sources include: 1) quantization error, 2) ASE
noise introduced during amplification, and 3) thermal/shot

Fig. 6. (a), (b) Net computing speed of different-sizedN × N photonic RIPs on SOI, Si3N4, and IMOS platforms. The light propagation speed is
estimated through the effective indices of the waveguides, while the computing speed is estimated considering light propagation speed, loop length,
and number of iterations simultaneously. (a) Inversion rate in terms of GInv/s and (b) processing speed in terms of TMAC/s are shown. (c) Power
efficiency of different-sized N ×N photonic RIPs.

Table 6. Power Estimation of an N × N Iterative Photonic
Processor

Component Number Unit Power (mW) Total Power (mW)

Laser N 69 [45] 69 N
TOPS 2N 2 0.49 [46] 0.98N 2

SOA xN 2a 50 [36] 50xN 2

DAC 2N 2 0.045 [47] 0.09N 2

ADC 2N 2 0.46 [48] 0.92N 2

ax � 2, 4, 6, 9, 11, 11 according to Fig. 7(g).
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noise introduced during detection. The three error sources are
first analyzed respectively, followed by a system-level analysis.

1. Quantization Error
The digital and analog conversions during computation intro-
duce quantization errors. The error of DAC is introduced in the
Weight Bank block, while the error of ADC is introduced in
the readout stage.

The Weight Bank block used to encode matrix weights suf-
fers from deviations from ideal values due to two reasons.
1) The finite bit resolution of DACs limits the accuracy of
the phase shift applied to two arms of the MZI unit, which
introduces quantization noises in the encoded matrix weights.
This can be mitigated by using high-resolution DACs.
2) Weight encoding deviations due to deviations in phase en-
coding among different wavelength channels [Δϕq�f � �
f
f c
Δϕq�f c�, f c is the center wavelength, and Δϕq (q � 1, 2)

represents the phase shifts of upper and lower arms].
Independent impacts of 1) and 2) on the accuracy of weights
encoding (defined as 1 − jmencoded−midealj

jmidealj × 100%) are numerically
simulated and shown in Figs. 7(a)–7(f ). 10,000 randomly
generated matrix elements are simulated. According to
Figs. 7(a)–7(f ), a DAC with a resolution of 16 bits is enough
to guarantee <0.1% relative weight-encoding error. The
weight-encoding error caused by wavelength multiplexing
spanning 20 nm is around 3%.

There exists an output resolution limitation in analog com-
putation, since the resolution power has to be higher than the
shot noise limit to avoid accuracy loss in the readout stage [51].

The allowed output bit resolution is Bout � 1
2 log2

�
PT
hc∕λ

�
, where

P �W� is the full-scale optical power (corresponds to the real-
valued unit “1”), and T �s� is the data updating period (time
taken for one iteration). The permitted range of full-scale op-
tical power is determined by the processor size and the SOA
saturation power, while the data updating rate is decided by
the loop length. These effects are discussed in the following
sections and included in the accuracy analysis.

2. Noise Introduced during Amplification
SOAs are used to compensate for on-chip losses to ensure a
lossless operation. On-chip losses for 2 × 2 to 64 × 64 process-
ors are estimated to be 7.4, 14.3, 21.3, 28.5, 36.5, and
45.1 dB, respectively. Main loss sources include the 3 dB power
loss of MMI couplers, IL of MMI couplers, BPFs, waveguide
crossings, and waveguide propagation.

The ASE noise power is calculated as a function of the cas-
caded stage number, k, according to Eq. (10b) and is shown in
Fig. 7(g). Each SOA is assumed to have 3.8 dB noise figure,
15 dB maximal gain, 19.6 dBm output saturation power, and
120 nm 3 dB gain BW in the numerical simulations [52]. It
should be noted that there exists an optimal number of SOA
stages that generates the least ASE power for each processor size,

Fig. 7. Matrix weights encoding error for (a)–(e) different DAC bit resolutions and (f ) 20 nm wavelength span. Using a 16-bit DAC is enough to
guarantee <0.1% relative weight encoding error. The encoding error due to wavelength multiplexing is around 3%. (g) ASE noise powers of
different-sized processors when cascading different numbers of SOA stages. Red circles highlight the minimal achievable ASE powers for differ-
ent-sized processors. Pin,sat at optimal stages of different-sized processors are indicated by the “+” sign. SNR of coherent detection when (h) both
thermal noise and shot noise are considered, (i) only thermal noise is considered, and (j) only shot noise is considered. Thermal noise is dominant
when signal power is low, while shot noise is dominant when signal power is high.
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as indicated by the red circle in Fig. 7(g). The smallest ASE
powers are estimated to be −71.7, −65.8, −59.9, −53.5, −46.2,
and −37.6 dBm for 2 × 2 to 64 × 64 processors, respectively.
The corresponding single stage gains are 3.7, 3.6, 3.6, 3.2,
3.3, and 4.1 dB, respectively.

The ASE power is normalized to input signal power and
then added to the signal in accuracy analysis. The maximum
input signal power is limited by nonlinear effects in the
SOA when operating in the saturation region. The minimal
SOA input signal power is limited by the optical SNR and will
influence the inversion accuracy. An input signal power of at
least 20 dB higher than the ASE power is chosen in the per-
formance analyses.

3. Noise Introduced during Detection
A homodyne coherent detection scheme is chosen to extract the
computation results in the photonic RIP. As mentioned before,
shot noise from PDs and thermal noise from TIAs are two main
noise sources of coherent detection. Based on Eq. (15), the
SNRs (dB) for different signal and reference powers are

simulated and shown in Figs. 7(h)–7(j). The lower limit of sig-
nal power is determined by the output signal resolution, while
the upper limit of the signal power is determined by the SOA
output saturation power. When both signal power and refer-
ence power are low, thermal noise is the dominant noise source,
while shot noise is dominant when signal power and reference
power are high.

4. System-Level Analysis
In this part, randomly generated matrices with sizes ranging
from 2 × 2 to 64 × 64 are inverted to show the overall inversion
accuracy of the photonic RIP, including the three main error
sources mentioned above. In our simulation, ρ�IN − ωA� is
limited to <0.99 for a reasonable simulation time.
Preconditioning can be applied to matrices with large spectral
radius (0.99–1) for faster convergence rates [9].

The dependence between inversion accuracy and input sig-
nal power is assessed and shown in Fig. 8(a) (parameters used in
the simulations are listed in Table 7; the input power and refer-
ence power are set to be equal). Note that the input signal
power corresponds to the real-valued unit “1” in the compu-
tation. The solid lines represent the inversion accuracy when a
single wavelength processor and multiple copies of the unit are
used. The inversion accuracy increases with the input signal
power first linearly and then at a saturated rate. The number
of iterations taken before convergence is also shown in blue text
next to the figure legends in Fig. 8(a). The larger numbers of
eigenvalues for larger-sized processors lead to a larger
ρ�IN − ωA�, corresponding to a slower convergence rate (larger
iterations for convergence). The red dashed lines represent the
input signal power range when wavelength multiplexing is used
and the corresponding inversion accuracy for different-sized
processors. It can be seen that an accuracy of >98% can be
reached for a 64 × 64 processor when a single wavelength is
used, while the accuracy slightly drops to >90% when wave-
length multiplexing is used. The use of wavelength multiplex-
ing technique is limited when the matrix size becomes large.
This is because the allowable maximal input signal power de-
creases when increasing the number of multiplexed wave-
lengths, leading to a decrease in the inversion accuracy.

Table 7. Parameters Used in Accuracy Analyses of the
Iterative Photonic Processor

Parameter Value

Processor size 2 × 2 − 64 × 64
Number of random matrix instances 500/processor size
Half-wave voltage of MZI 4.36 V [53]
DAC resolution 16 bits
SOA NF 3.8 dB [52]
BW of the optical BPF 64.5 MHz [54]
IL of the optical BPF 0.2 dB [54]
IL of an MMI coupler 0.2 dB [29]
IL of a waveguide crossing 0.019 dB [55]
Center frequency 193.6 THz
WDM channel spacing 0.1 nm [28]
Electron charge 1.6 × 10−19C
Planck’s constant 6.626 × 10−34 J · s
BW of the electronic filter 32.25 MHz
Boltzmann constant 1.38 × 10−23 J∕K
Temperature 300 K
Electronic resistance 50 Ω

Fig. 8. (a) Inversion accuracy of different-sized photonic RIPs when input signal powers are different (optical filter BW � 64.5 MHz). Values in
blue indicate the required iteration numbers for convergence. High-input signal power (>1 dBm) is necessary for ensuring an accuracy of >90%
when using wavelength multiplexing technique. (b) Fitted relationship between inversion accuracy and optical filter BW (input signal power is
16.6 dBm) for processor size ranging from 2 × 2 to 64 × 64; (c) error breakdown of different-sized photonic RIPs (input signal power is 16.6 dBm).
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The inversion accuracy for processors larger than 64 × 64 is
estimated to drop evidently, which is due to the heavily accu-
mulated ASE noise and the limited input signal power. We be-
lieve it is sensible to apply the block-wise inversion method for
inverting matrices larger than 64 × 64. Details are introduced in
Section 4.D.

The BW of the optical filter determines the ASE noise
power and in turn the inversion accuracy. The relationship
between inversion accuracy and the filter BW is shown in
Fig. 8(b) (input signal power @16.6 dBm; single wavelength).
For processors ≤ 32 × 32, applying a filter with BW of smaller
than 20 GHz guarantees an inversion accuracy of >90%. The
BW, however, needs to drop to below 2 GHz for a 64 × 64
processor to ensure an accuracy of >90%. The error break-
down for processors with port counts of 2 × 2 to 64 × 64 (with
input signal power at 16.6 dBm) is shown in Fig. 8(c). The
quantization error dominates when matrix size is small, while
ASE noise becomes dominant when matrix size becomes large.

D. Scalability
The proposed iterative photonic processor shows good scalabil-
ities in terms of accuracy, speed, and power efficiency. A larger-
sized processor requires a longer computation time, while the
power efficiency remains similar to that of a smaller-sized proc-
essor. The proposed iterative photonic processor is capable of
inverting a 64 × 64 matrix with an accuracy of >98% and an
inversion rate of 10.7 MInv/s. Considering that the typical diam-
eter of InP wafers is 100 mm, the device footprint could be a
limiting factor to its scalability. However, the heterogeneous in-
tegration schemes on SOI wafers can easily break the limitation
(wafer diameter is up to 300 mm) [16]. Additionally, the induced
ASE noise plays a more critical role in the scale-up of processors,
and thus we propose the use of block-wise inversion techniques
for larger-sized processors as explained in the following.

In principle, the iterative photonic processor can invert arbi-
trarily large matrices by using block-wise inversion techniques.
If a �P � Q� × �P � Q� complex-valued matrix M is parti-

tioned into block form M �
h A B
C D

i
, where A ∈ CP×P ,

B ∈ CP×Q , C ∈ CQ×P , and D ∈ CQ×Q , then the inverse of
M can be computed in four blocks as shown in Eq. (16),
M −1

�
�
A−1�A−1B�D −CA−1B�−1CA−1 −A−1B�D −CA−1B�−1

−�D −CA−1B�−1CA−1 �D −CA−1B�−1
�
:

(16)
Referring back to Section 3, the core of the iterative pho-

tonic processor is a matrix-vector multiplier. By adding mod-
ulators between the input lasers and the MMI couplers in
Summation 1 block, the processor is enabled to support arbi-
trary complex-valued input vectors. It performs matrix multi-
plication by running only one iteration if an additional optical
switch is added at the readout stage, while by sending in a unit
input and modulating the input vector in the second iteration,
the processor is configured to compute matrix addition and
subtraction. Therefore, the proposed processor can be pro-
grammed to compute matrix addition, subtraction, multiplica-
tion, and inversion. It is thus capable of solving Eq. (16) by

computing �D − CA−1B�−1 first and then implementing matrix
multiplications and additions separately for each block. The
inverse of the large matrix M is then obtained by combining
the computation results of four blocks.

5. CONCLUSION

An N × N photonic integrated RIP is proposed for the first
time in this paper for fast computations of complex-valued ma-
trix inversions. The RICH method is chosen as the inversion
algorithm due to its easy implementations and fewer constraints
on the matrix to be inverted. A Min-Max algorithm is proposed
to choose the optimal damping parameter ω of the RICH
method for the highest convergence rate, where the maximum
distance between the scaled eigenvalues and point (1,0) is
minimized.

System architectures and modeling are presented for the
photonic RIP, followed by a discussion of implementations
on mainstream photonic integration platforms. The integration
of III-V gain components enables a lossless scalable design,
which is necessary for the iterative computations based on
the RICH method. Wavelength multiplexing can be used to
significantly improve the processing efficiency of a single proc-
essor, allowing for the computation of multiple columns of the
inverse matrix in a single processor. The accurate phase control
provided by integrated platforms realizes the phase-sensitive de-
sign of the proposed processor.

Performance analyses are also carried out for key photonic
building blocks, followed by a system-level analysis including
speed, power efficiency, accuracy, and scalability of the proces-
sor. The predicted performances can be used as a guideline for
designing an N × N processor. Simulation results show the fea-
sibility of an iterative photonic processor up to size 64 × 64
with an inversion accuracy of >98% and >80 times faster in-
version rate than electronic computers. The proposed photonic
processor is estimated to be over an order of magnitude more
energy-efficient than electronic processors.

The proposed photonic integrated RIP serves as a promising
solution for future systems that require fast and highly paral-
leled computations.
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