• Microelectronics
  • Vol. 51, Issue 1, 91 (2021)
DAI Yonghong1, LAI Fan1, and LIU Ronggui2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.200480 Cite this Article
    DAI Yonghong, LAI Fan, LIU Ronggui. Research Progress of Spin Qubits Technology Based on Silicon[J]. Microelectronics, 2021, 51(1): 91 Copy Citation Text show less
    References

    [1] KELLY J, BARENDS R, FOWLER A G, et al. State preservation by repetitive error detection in a superconducting quantum circuit [J]. Nature, 2014, 519(7541): 66-69.

    [2] IBM makes quantum computing available on IBM cloud [EB/OL]. http:// www-03.ibm.com, 2016.

    [3] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor [J]. Nature, 2019, 574(7779): 505-510.

    [5] ITOH K M, WATANABE H. Isotope engineering of silicon and diamond for quantum computing and sensing applications [J]. MRS Commun, 2014, 4(4): 143-157.

    [6] LADD T D, CARROLL M S. Silicon qubits [R]. Encyclopedia Modern Optics, 2018: 467-477.

    [7] YANG C H, CHAN K W, HARPER R, et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering [J]. Nature Elec, 2019, 2(4): 151-158.

    [8] VELDHORST M, YANG C H, HWANG J C C, et al. A two qubit logic gate in silicon [J]. Nature, 2015, 526(7573): 410-414.

    [9] HUANG W, YANG C H, CHAN K W, et al. Fidelity benchmarks for two-qubit gates in silicon [J]. Nature, 2019, 569(7757): 532-536.

    [10] PATERAS A, PARK J, AHN Y, et al. A programmable two-qubit quantum processor in silicon [J]. Nature, 2018, 555(8690): 633-637.

    [11] YONEDA J, TAKEDA K, OTSUKA T, et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% [J]. Nature Nanotechnol, 2018, 13(2): 102-106.

    [12] AKEDA K, NOIRI A, YONEDA J, et al. Resonantly driven singlet-triplet spin qubit in silicon [J]. Phys Rev Lett, 2020, 124(11): 7701.

    [13] ANDREWS R W, JONES C, REED M D, et al. Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit [J]. Nature Nanotechnol, 2019, 7(14): 747-750.

    [14] PETTA J R, JOHNSON A C, TAYLOR J M, et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots [J]. Sci, 2005, 309(5744): 2180-2184.

    [15] ONO K, MORI T, MORIYAMA S. High-temperature operation of a silicon qubit [J]. Scientif Rep, 2019, 9(1): 469.

    [16] URDAMPILLETA M, NIEGEMANN D J, CHANRION E, et al. Gate-based high fidelity spin readout in a CMOS device [J]. Nature Nanotechnol, 2019, 14(8): 737-741.

    [17] MAURAND R, JEHL X, KOTEKAR-PATIL D, et al. A CMOS silicon spin qubit [J]. Nature Commun, 2016, 7: 13575.

    [18] TENBERG S B, ASAAD S, MADZIK M T, et al. Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices [J]. Phys Rev B, 2019, 205306.

    [19] HE Y, GORMAN S K, KEITH D, et al. A two-qubit gate between phosphorus donor electrons in silicon [J]. Nature , 2019, 571(7765): 371-375.

    [20] MUHONEN J T, LAUCHT A, SIMMONS S, et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking [J]. J Phys Conden Matt, 2015, 27(15): 154205.

    [21] SABBAGH D, THOMAS N, TORRES J,et al. Quantum transport properties of industrial 28Si/28SiO2 [J]. Phys Rev Appl, 2019, 12: 014013.

    [22] MAZZOCCHI V, SENNIKOV P G, BULANOV A D, et al. 99.992% 28Si CVD-grown epilayer on 300 mm substrates for large scale integration of silicon spin qubits [J]. J Cryst Growth, 2019, 509: 1-7.

    [23] SIGILLITO A J, LOY J C, ZAJAC D M, et al. Site-selective quantum control in an isotopically enriched 28Si/Si0.7Ge0.3 quadruple quantum dot [J]. Phys Rev Appl, 2019, 11: 061006.

    [24] MI X, BENITO M, PUTZ S, et al. A coherent spin-photon interface in silicon [J]. Nature, 2018, 555(7698): 599-603.

    [25] SAMKHARADZE N, ZHENG G, KALHOR N, et al. Strong spin-photon coupling in silicon [J]. Sci, 2018, 359(6380): 1123-1127.

    [26] LI R, PETIT L, FRANKE D P, et al. A crossbar network for silicon quantum dot qubits [J]. Sci Advan, 2018, 4(7): 3960.

    [27] VANDERSYPEN L M K, BLUHM H, CLARKE J S,et al. Interfacing spin qubits in quantum dots and donors – hot, dense and coherent [J]. NPJ Quant Inform, 2017, 3(1): 34.

    [28] VELDHORST M, EENINK H G J, YANG C H, et al. Silicon CMOS architecture for a spin-based quantum computer [J]. Nature Commun, 2017, 8(1): 1766.

    [29] YANG C H, LEON R C C, HWANG J C C, et al. Operation of a silicon quantum processor unit cell above one kelvin. [J]. Nature, 2020, 580(7803): 350-354.

    [30] BERTRAND B, FLENTJE H, TAKADA S, et al. Quantum manipulation of two-electron spin states in isolated double quantum dots [J]. Phys Rev Lett, 2015, 115: 096801.

    [31] EZZOUCH R, APRA A, AMISSE A, et al. Gate- reflectometry dispersive readout and coherent control of a spin qubit in silicon [J]. Nature Commun, 2019, 10: 2776.

    [32] DEVORET M H, WALLRAFF A,MARTINIS J M. Superconducting qubits: a short review [EB/OL]. https://arxiv.org/abs/cond-mat/0411174, 2004.

    [33] PATRA B, VAN DIJK J P G, SUBRAMANIAN S, et al. A scalable cryo-CMOS 2-to-20 GHz digitally intensive controller for 4×32 frequency multiplexed spin qubits/transmons in 22 nm FinFET technology for quantum computers [C] // IEEE ISSCC. San Francisco, CA, USA. 2020: 9063109.

    [34] CLARKE J. What it will take to make quantum computers practical [EB/OL]. https://newsroom.intel.com/editorials/ what-it-will-take-make-quantum-computers-practical/#gs.gz0ibg, 2019.

    [35] GUEVEL L L, CEA-LETI M, CEA I. A 110 mK 295 μW 28 nm FDSOI CMOS quantum integrated circuit with a 2.8 GHz excitation and nA current sensing of an on-chip double quantum dot [C] // IEEE ISSCC. San Francisco, CA, USA. 2020: 9063090.

    [36] WANG K, LI H O, LUO G, et al. Improving mobility of silicon metal-oxide-semiconductor devices for quantum dots by high vacuum activation annealing [J]. Euro Phys Lett, 2020, 130(2): 27001.

    [37] ZHANG X, HU R Z, LI H O, et al. Giant anisotropy of spin relaxation and spin-valley mixing in a silicon quantum dot [J]. Phys Rev Lett, 2020, 6: 257701.

    [38] ONO K, MORI T, MORIYAMA S. High-temperature operation of a silicon qubit [J]. Scientif Rep, 2019, 9: 469

    [39] PETIT L, BOTER J M, EENINK H G J, et al. Spin lifetime and charge noise in hot silicon quantum dot qubits [J]. Phys Rev Lett, 2018, 121(7): 076801.

    [40] YANG C H, LEON R C C, HWANG J C C, et al. Operation of a silicon quantum processor unit cell above one Kelvin [J]. Nature, 2020, 580(7803): 250-354.

    [41] PETIT L, EENINK H G J, RUSS M, et al. Universal quantum logic in hot silicon qubits [J]. Nature, 2020, 580 (7803): 355-359.

    DAI Yonghong, LAI Fan, LIU Ronggui. Research Progress of Spin Qubits Technology Based on Silicon[J]. Microelectronics, 2021, 51(1): 91
    Download Citation