• Photonics Research
  • Vol. 9, Issue 8, 1581 (2021)
Fangchen Hu1, Shouqing Chen2, Guoqiang Li1, Peng Zou1, Junwen Zhang1, Jian Hu2, Jianli Zhang2, Zhixue He3, Shaohua Yu3, Fengyi Jiang2, and Nan Chi1、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
  • 2National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 330096, China
  • 3State Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation, Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.424934 Cite this Article Set citation alerts
    Fangchen Hu, Shouqing Chen, Guoqiang Li, Peng Zou, Junwen Zhang, Jian Hu, Jianli Zhang, Zhixue He, Shaohua Yu, Fengyi Jiang, Nan Chi. Si-substrate LEDs with multiple superlattice interlayers for beyond 24 Gbps visible light communication[J]. Photonics Research, 2021, 9(8): 1581 Copy Citation Text show less
    Cited By
    Article index updated: Mar. 8, 2024
    Citation counts are provided from Web of Science. The counts may vary by service, and are reliant on the availability of their data.
    The article is cited by 27 article(s) from Web of Science.
    Fangchen Hu, Shouqing Chen, Guoqiang Li, Peng Zou, Junwen Zhang, Jian Hu, Jianli Zhang, Zhixue He, Shaohua Yu, Fengyi Jiang, Nan Chi. Si-substrate LEDs with multiple superlattice interlayers for beyond 24 Gbps visible light communication[J]. Photonics Research, 2021, 9(8): 1581
    Download Citation