• Photonics Research
  • Vol. 9, Issue 8, 1581 (2021)
Fangchen Hu1, Shouqing Chen2, Guoqiang Li1, Peng Zou1, Junwen Zhang1, Jian Hu2, Jianli Zhang2, Zhixue He3, Shaohua Yu3, Fengyi Jiang2, and Nan Chi1、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
  • 2National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 330096, China
  • 3State Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation, Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.424934 Cite this Article Set citation alerts
    Fangchen Hu, Shouqing Chen, Guoqiang Li, Peng Zou, Junwen Zhang, Jian Hu, Jianli Zhang, Zhixue He, Shaohua Yu, Fengyi Jiang, Nan Chi. Si-substrate LEDs with multiple superlattice interlayers for beyond 24 Gbps visible light communication[J]. Photonics Research, 2021, 9(8): 1581 Copy Citation Text show less
    References

    [1] N. Chi, Y. Zhou, Y. Wei, F. Hu. Visible light communication in 6G: advances, challenges, and prospects. IEEE Veh. Technol. Mag., 15, 93-102(2020).

    [2] E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, C. Dehos. 6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Veh. Technol. Mag., 14, 42-50(2019).

    [3] L. E. M. Matheus, A. B. Vieira, L. F. M. Vieira, M. A. M. Vieira, O. Gnawali. Visible light communication: concepts, applications and challenges. IEEE Commun. Surveys Tuts., 21, 3204-3237(2019).

    [4] G. Corbellini, K. Aksit, S. Schmid, S. Mangold, T. R. Gross. Connecting networks of toys and smartphones with visible light communication. IEEE Commun. Mag., 52, 72-78(2014).

    [5] Y. Zhou, X. Zhu, F. Hu, J. Shi, F. Wang, P. Zou, J. Liu, F. Jiang, N. Chi. Common-anode LED on a Si substrate for beyond 15 Gbit/s underwater visible light communication. Photon. Res., 7, 1019-1029(2019).

    [6] N. Chi, Y. Zhou, S. Liang, F. Wang, J. Li, Y. Wang. Enabling technologies for high-speed visible light communication employing CAP modulation. J. Lightwave Technol., 36, 510-518(2018).

    [7] M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, M. D. Dawson. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res., 5, A35-A43(2017).

    [8] Y. Wang, X. Huang, J. Shi, Y.-Q. Wang, N. Chi. Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology. Opt. Eng., 55, 056104(2016).

    [9] F. Hu, J. A. Holguin-Lerma, Y. Mao, P. Zou, C. Shen, T. K. Ng, B. S. Ooi, N. Chi. Demonstration of a low-complexity memory-polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode. Opto-Electron. Adv., 3, 200009(2020).

    [10] X. Huang, Z. Wang, J. Shi, Y. Wang, N. Chi. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. Opt. Express, 23, 22034-22042(2015).

    [11] E. Xie, X. He, M. S. Islim, A. A. Purwita, J. J. D. McKendry, E. Gu, H. Haas, M. D. Dawson. High-speed visible light communication based on a III-nitride series-biased micro-LED array. J. Lightwave Technol., 37, 1180-1186(2019).

    [12] X. Xiao, H. Tang, T. Zhang, W. Chen, W. Chen, D. Wu, R. Wang, K. Wang. Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication. Opt. Express, 24, 21577-21586(2016).

    [13] R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, M. D. Dawson. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol. Lett., 28, 2023-2026(2016).

    [14] E. Xie, R. Bian, X. He, M. S. Islim, C. Chen, J. J. D. McKendry, E. Gu, H. Haas, M. D. Dawson. Over 10 Gbps VLC for long-distance applications using a GaN-based series-biased micro-LED array. IEEE Photonics Technol. Lett., 32, 499-502(2020).

    [15] Z. Wei, L. Zhang, L. Wang, C.-J. Chen, A. Pepe, X. Liu, K.-C. Chen, Y. Dong, M.-C. Wu, L. Wang. High-speed visible light communication system based on a packaged single layer quantum dot blue micro-LED with 4-Gbps QAM-OFDM. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2020).

    [16] S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, M. D. Dawson. A review of gallium nitride LEDs for multigigabit-per-second visible light data communications. Semicond. Sci. Technol., 32, 023001(2017).

    [17] Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, H. Yang. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics, 10, 595-599(2016).

    [18] Y. Zhou, Y. Wei, F. Hu, J. Hu, Y. Zhao, J. Zhang, F. Jiang, N. Chi. Comparison of nonlinear equalizers for high-speed visible light communication utilizing silicon substrate phosphorescent white LED. Opt. Express, 28, 2302-2316(2020).

    [19] N. Chi, Y. Zhao, M. Shi, P. Zou, X. Lu. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system. Opt. Express, 26, 26700-26712(2018).

    [20] Q. Lv, J. Liu, C. Mo, J. Zhang, X. Wu, Q. Wu, F. Jiang. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure: role of enhanced interwell carrier transport. ACS Photonics, 6, 130-138(2019).

    [21] F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, J. Liu. Efficient InGaN-based yellow-light-emitting diodes. Photon. Res., 7, 144-148(2019).

    [22] W. Qi, J. Zhang, C. Mo, X. Wang, X. Wu, Z. Quan, G. Wang, S. Pan, F. Fang, J. Liu, F. Jiang. Effects of thickness ratio of InGaN to GaN in superlattice strain relief layer on the optoelectrical properties of InGaN-based green LEDs grown on Si substrates. J. Appl. Phys., 122, 084504(2017).

    [23] X. Tao, J. Liu, J. Zhang, C. Mo, L. Xu, J. Ding, G. Wang, X. Wang, X. Wu, Z. Quan, S. Pan, F. Fang, F. Jiang. Performance enhancement of yellow InGaN-based multiple-quantum-well light-emitting diodes grown on Si substrates by optimizing the InGaN/GaN superlattice interlayer. Opt. Mater. Express, 8, 1221-1230(2018).

    [24] C. Mo, W. Fang, Y. Pu, H. Liu, F. Jiang. Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD. J. Cryst. Growth, 285, 312-317(2005).

    [25] J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, R. F. Karlicek. Toward smart and ultra‐efficient solid‐state lighting. Adv. Opt. Mater., 2, 809-836(2014).

    [26] S. J. Wang, S. Q. Li, X. M. Wu, F. Chen, F. Y. Jiang. Study on the effect of thermal annealing process on ohmic contact performance of AuGeNi/n-AlGaInP. Acta Phys. Sinica, 69, 048103(2020).

    [27] X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, N. Chi. 2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED. IEEE Photonics J., 7, 7904008(2015).

    [28] R. A. Shafik, M. S. Rahman, A. R. Islam. On the extended relationships among EVM, BER and SNR as performance metrics. International Conference on Electrical and Computer Engineering, 408-411(2006).

    [29] H. E. Levin. A complete and optimal data allocation method for practical discrete multitone systems. GLOBECOM’01. IEEE Global Telecommunications Conference, 369-374(2001).

    [30] J. Campello. Optimal discrete bit loading for multicarrier modulation systems. IEEE International Symposium on Information Theory, 193(1998).

    [31] J. Campello. Practical bit loading for DMT. IEEE International Conference on Communications, 801-805(1999).

    [32] P. Zou, Y. Zhao, F. Hu, N. Chi. Underwater visible light communication at 3.24 Gb/s using novel two-dimensional bit allocation. Opt. Express, 28, 11319-11338(2020).

    [33] B. Inan, S. C. J. Lee, S. Randel, I. Neokosmidis, A. M. J. Koonen, J. W. Walewski. Impact of LED nonlinearity on discrete multitone modulation. J. Opt. Commun. Netw., 1, 439-451(2009).

    [34] X. Huang, J. Shi, J. Li, Y. Wang, N. Chi. A Gb/s VLC transmission using hardware preequalization circuit. IEEE Photonics Technol. Lett., 27, 1915-1918(2015).

    [35] F. Hu, G. Li, P. Zou, J. Hu, S. Chen, Q. Liu, J. Zhang, F. Jiang, S. Wang, N. Chi. 20.09-Gbit/s underwater WDM-VLC transmission based on a single Si/GaAs-substrate multichromatic LED array chip. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2020).

    [36] M. Chen, J. He, J. Tang, L. Chen. Pilot-aided sampling frequency offset estimation and compensation using DSP technique in DD-OOFDM systems. Opt. Fiber Technol., 20, 268-273(2014).

    [37] X. Deng, S. Mardanikorani, Y. Wu, K. Arulandu, B. Chen, A. M. Khalid, J.-P. M. G. Linnartz. Mitigating LED nonlinearity to enhance visible light communications. IEEE Trans. Commun., 66, 5593-5607(2018).

    [38] R. Bian, I. Tavakkolnia, H. Haas. 15.73 Gb/s visible light communication with off-the-shelf LEDs. J. Lightwave Technol., 37, 2418-2424(2019).

    [39] J. Shi, X. Zhu, F. Wang, P. Zou, Y. Zhou, J. Liu, F. Jiang, N. Chi. Net data rate of 14.6 Gbit/s underwater VLC utilizing silicon substrate common-anode five primary colors LED. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2019).

    [40] X. Zhu, F. Wang, M. Shi, N. Chi, J. Liu, F. Jiang. 10.72 Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization. Optical Fiber Communication Conference, M3K.3(2018).

    [41] R. Bian, I. Tavakkolnia, H. Haas. 10.2 Gb/s visible light communication with off-the-shelf LEDs. European Conference on Optical Communication (ECOC), 1-3(2018).

    [42] H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, H. Haas. LED based wavelength division multiplexed 10 Gb/s visible light communications. J. Lightwave Technol., 34, 3047-3052(2016).

    [43] Y. Wang, L. Tao, X. Huang, J. Shi, N. Chi. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer. IEEE Photonics J., 7, 7904507(2015).

    [44] P. Zou, F. Hu, Y. Zhao, N. Chi. On the achievable information rate of probabilistic shaping QAM order and source entropy in visible light communication systems. Appl. Sci., 10, 4299(2020).

    Fangchen Hu, Shouqing Chen, Guoqiang Li, Peng Zou, Junwen Zhang, Jian Hu, Jianli Zhang, Zhixue He, Shaohua Yu, Fengyi Jiang, Nan Chi. Si-substrate LEDs with multiple superlattice interlayers for beyond 24 Gbps visible light communication[J]. Photonics Research, 2021, 9(8): 1581
    Download Citation