• Opto-Electronic Advances
  • Vol. 4, Issue 5, 200006-1 (2021)
Minkyung Kim1, Dasol Lee1, Younghwan Yang1, and Junsuk Rho1、2、*
Author Affiliations
  • 1Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
  • 2Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
  • show less
    DOI: 10.29026/oea.2021.200006 Cite this Article
    Minkyung Kim, Dasol Lee, Younghwan Yang, Junsuk Rho. Switchable diurnal radiative cooling by doped VO2[J]. Opto-Electronic Advances, 2021, 4(5): 200006-1 Copy Citation Text show less
    References

    [1] CG Granqvist, A Hjortsberg. Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J Appl Phys, 52, 4205-4220(1981).

    [2] AR Gentle, GB Smith. Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett, 10, 373-379(2010).

    [3] S Catalanotti, V Cuomo, G Piro, D Ruggi, V Silvestrini, et al. The radiative cooling of selective surfaces. Sol Energy, 17, 83-89(1975).

    [4] AP Raman, MA Anoma, LX Zhu, E Rephaeli, SH Fan. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515, 540-544(2014).

    [5] X Huang, N Li, JF Wang, DF Liu, ZJ Xu, et al. Single nanoporous MgHPO4·1.2H2O for daytime radiative cooling. ACS Appl Mater Interfaces, 12, 2252-2258(2020).

    [6] B Ko, D Lee, T Badloe, J Rho. Metamaterial-based radiative cooling: towards energy-free all-day cooling. Energies, 12, 1-14(2018).

    [7] T Li, Y Zhai, SM He, WT Gan, ZY Wei, et al. A radiative cooling structural material. Science, 364, 760-763(2019).

    [8] PC Hsu, AY Song, PB Catrysse, C Liu, YC Peng, et al. Radiative human body cooling by nanoporous polyethylene textile. Science, 353, 1019-1023(2016).

    [9] W Li, SH Fan. Nanophotonic control of thermal radiation for energy applications[Invited]. Opt Express, 26, 15995-16021(2018).

    [10] JL Kou, Z Jurado, Z Chen, SH Fan, AJ Minnich. Daytime radiative cooling using near-black infrared emitters. ACS Photonics, 4, 626-630(2017).

    [11] YC Peng, J Chen, AY Song, PB Catrysse, PC Hsu, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain, 1, 105-112(2018).

    [12] J Mandal, YK Fu, AC Overvig, MX Jia, KR Sun, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362, 315-319(2018).

    [13] LL Cai, AY Song, PL Wu, PC Hsu, YC Peng, et al. Warming up human body by nanoporous metallized polyethylene textile. Nat Commun, 8, 496(2017).

    [14] AK Yang, LL Cai, RF Zhang, JY Wang, PC Hsu, et al. Thermal management in nanofiber-based face mask. Nano Lett, 17, 3506-3510(2017).

    [15] D Lee, M Go, S Son, M Kim, T Badloe, et al. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy, 79, 105426(2021).

    [16] SY Heo, GJ Lee, DH Kim, YJ Kim, S Ishii, et al. A Janus emitter for passive heat release from enclosures. Sci Adv, 6, 36, eabb1906(2020).

    [17] GJ Lee, DH Kim, SY Heo, YM Song. Spectrally and spatially selective emitters using polymer hybrid spoof plasmonics. ACS Appl Mater Interfaces, 12, 47, 53206-53214(2020).

    [18] M Kim, D Lee, S Son, Y Yang, H Lee, et al. Visibly transparent radiative cooler under direct sunlight. Adv Opt Mater, 2002226(2021).

    [19] D Chae, M Kim, PH Jung, S Son, J Seo, et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl Mater Interfaces, 12, 7, 8073-8081(2020).

    [20] S Atiganyanun, JB Plumley, SJ Han, K Hsu, J Cytrynbaum, et al. Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics, 5, 1181-1187(2018).

    [21] H Bao, C Yan, BX Wang, X Fang, CY Zhao, et al. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol Energ Mater Sol C, 168, 78-84(2017).

    [22] ZF Huang, XL Ruan. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int J Heat Mass Transf, 104, 890-896(2017).

    [23] Y Zhai, YG Ma, SN David, DL Zhao, RN Lou, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355, 1062-1066(2017).

    [24] K Nishikawa, K Yatsugi, Y Kishida, K Ito. Temperature-selective emitter. Appl Phys Lett, 114, 211104(2019).

    [25] MK Chen, AM Morsy, ML Povinelli. Design of VO2-coated silicon microspheres for thermally-regulating paint. Opt Express, 27, 21787-21793(2019).

    [26] LS Long, S Taylor, XY Ying, LP Wang. Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer. Mater Today Energy, 13, 214-220(2019).

    [27] ZY Jia, FZ Shu, YJ Gao, F Cheng, RW Peng, et al. Dynamically switching the polarization state of light based on the phase transition of vanadium dioxide. Phys Rev Appl, 9, 034009(2018).

    [28] P Markov, RE Marvel, HJ Conley, KJ Miller, Jr Haglund, et al. Optically monitored electrical switching in VO2. ACS Photonics, 2, 1175-1182(2015).

    [29] FZ Shu, LH Zhang, JN Wang, RW Peng, RH Fan, et al. Dynamically tunable bowtie nanoantennas based on the phase transition of vanadium dioxide. Opt Lett, 44, 2752-2755(2019).

    [30] MK Dietrich, F Kuhl, A Polity, PJ Klar. Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications. Appl Phys Lett, 110, 141907(2017).

    [31] W Burkhardt, T Christmann, S Franke, W Kriegseis, D Meister, et al. Tungsten and fluorine co-doping of VO2 films. Thin Solid Films, 402, 226-231(2002).

    [32] GV Jorgenson, JC Lee. Doped vanadium oxide for optical switching films. Sol Energy Mater, 14, 205-214(1986).

    [33] XJ Wang, YY Liu, DH Li, BH Feng, ZW He, et al. Structural and optical properties of tungsten-doped vanadium dioxide films. Chin Phys B, 22, 066803(2013).

    [34] YF Zhang, JC Zhang, XZ Zhang, C Huang, YL Zhong, et al. The additives W, Mo, Sn and Fe for promoting the formation of VO2(M) and its optical switching properties. Mater Lett, 92, 61-64(2013).

    [35] SJ Liu, HW Fang, YT Su, JH Hsieh. Metal–insulator transition characteristics of Mo- and Mn-doped VO2 films fabricated by magnetron cosputtering technique. Jpn J Appl Phys, 53, 063201(2014).

    [36] GR Khan, K Asokan, B Ahmad. Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition. Thin Solid Films, 625, 155-162(2017).

    [37] B Rajeswaran, AM Umarji. Effect of W addition on the electrical switching of VO2 thin films. AIP Adv, 6, 035215(2016).

    [38] Y Muraoka, Z Hiroi. Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates. Appl Phys Lett, 80, 583-585(2002).

    [39] LL Fan, S Chen, ZL Luo, QH Liu, YF Wu, et al. Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation. Nano Lett, 14, 4036-4043(2014).

    [40] M Ono, KF Chen, W Li, SH Fan. Self-adaptive radiative cooling based on phase change materials. Opt Express, 26, A777-A787(2018).

    [41] WJM Kort-Kamp, S Kramadhati, AK Azad, MT Reiten, DAR Dalvit. Passive radiative “thermostat” enabled by phase-change photonic nanostructures. ACS Photonics, 5, 4554-4560(2018).

    [42] Optics (Pearson Higher Education, Harlow, 2017).

    [43] Optical Waves in Layered Media 95 (Wiley Online Library, New York, 1988).

    [44] G Kirchhoff. Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann Phys, 185, 275-301(1860).

    [45] A Berk, GP Anderson, PK Acharya, LS Bernstein, L Muratov, et al. MODTRAN5: 2006 update. Proc SPIE, 6233, 62331F(2006).

    [46] Polymer Handbook 2nd ed (John Wiley and Sons, London, 1975).

    [47] Handbook of Polymers 2nd ed 450–454 (Elsevier, Oxford, 2012).

    [48] CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2014).

    [49] Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publ., Vilniys, 1994).

    [50] Physics for Scientists and Engineers 6th ed (WH Freeman, 2007).

    [51] Physics and Technology of Semiconductor Devices (Wiley, New York, 1967).

    [52] https://pubchem.ncbi.nlm.nih.gov/compound/Vanadium-dioxide.

    [53] NIST-JANAF Thermochemical Tables 4th ed (American Chemical Society and American Institute of Physics, New York, 1998).

    [54] https://data.kma.go.kr/resources/html/en/aowdp.html.

    [55] Y Shi, W Li, A Raman, SH Fan. Optimization of multilayer optical films with a memetic algorithm and mixed integer programming. ACS Photonics, 5, 684-691(2018).

    [56] D Chae, M Kim, PH Jung, S Son, J Seo, et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl Mater Interfaces, 12, 8073-8081(2020).

    [57] BB Naghshine, A Saboonchi. Optimized thin film coatings for passive radiative cooling applications. Opt Commun, 410, 416-423(2018).

    Minkyung Kim, Dasol Lee, Younghwan Yang, Junsuk Rho. Switchable diurnal radiative cooling by doped VO2[J]. Opto-Electronic Advances, 2021, 4(5): 200006-1
    Download Citation