• Opto-Electronic Advances
  • Vol. 4, Issue 5, 200006-1 (2021)
Minkyung Kim1, Dasol Lee1, Younghwan Yang1, and Junsuk Rho1、2、*
Author Affiliations
  • 1Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
  • 2Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
  • show less
    DOI: 10.29026/oea.2021.200006 Cite this Article
    Minkyung Kim, Dasol Lee, Younghwan Yang, Junsuk Rho. Switchable diurnal radiative cooling by doped VO2[J]. Opto-Electronic Advances, 2021, 4(5): 200006-1 Copy Citation Text show less

    Abstract

    This paper presents design and simulation of a switchable radiative cooler that exploits phase transition in vanadium dioxide to turn on and off in response to temperature. The cooler consists of an emitter and a solar reflector separated by a spacer. The emitter and the reflector play a role of emitting energy in mid-infrared and blocking incoming solar energy in ultraviolet to near-infrared regime, respectively. Because of the phase transition of doped vanadium dioxide at room temperature, the emitter radiates its thermal energy only when the temperature is above the phase transition temperature. The feasibility of cooling is simulated using real outdoor conditions. We confirme that the switchable cooler can keep a desired temperature, despite change in environmental conditions.
    ${\textit{ε}}_{\rm{transition}}={\rm{arctan}} \left(\frac{T-T_{{\rm{c}}}}{{\rm{Δ}} T} \times 10\right) \times \frac{{\textit{ε}}_{\mathrm{\rm{m}}}-{\textit{ε}}_{\mathrm{\rm{i}}}}{2 {\rm{arctan}} 10}+\frac{{\textit{ε}}_{\mathrm{\rm{m}}}+{\textit{ε}}_{\mathrm{\rm{i}}}}{2}\;, $(1)

    View in Article

    $ \begin{split} P\left(T\right)=& P_{\rm{rad }}(T)-P_{\rm{sun }} \\ & -P_{\rm{atm}}\left(T_{\rm{amb }}\right)-P_{\rm{cc}}\left(T, T_{\rm{amb}}\right)\;, \end{split} $(2)

    View in Article

    $ P_{\rm{rad}}(T)=\iint_{0}^{\infty} I_{\rm{BB}}(T, \lambda) E(T, \lambda, \theta) {\rm{d}} \lambda {\rm{cos}} \theta {\rm{d}} \Omega\;, $(3)

    View in Article

    $ I_{\rm{BB}}(T, \lambda)=\frac{2 {\rm{hc}}^{2}}{\lambda^{5}} \frac{1}{{\rm{e}}^{{\rm{hc}} /\left(\lambda k_{\rm{B}} T\right)}-1}\;, $(4)

    View in Article

    $ P_{\rm{sun}}=\int_{0}^{\infty} E(T, \lambda) I_{\rm{AM} 1.5}\left(\lambda\right) {\rm{d}} \lambda\;, $(5)

    View in Article

    $\begin{split} P_{\rm{atm}}\left(T_{\rm{amb}}\right)= & \iint_{0}^{\infty} I_{\rm{BB}}\left(T_{\rm{amb}}, \lambda\right) E(T, \lambda, \theta) \\ & \cdot E_{\rm{atm}}(\lambda, \theta) {\rm{d}} \lambda \cos \theta {\rm{d}} \Omega \;,\end{split}$(6)

    View in Article

    $ P_{\rm{cc}}\left(T, T_{\rm{amb}}\right)=h_{\rm{cc}}\left(T_{\rm{amb}}-T\right) \;,$(7)

    View in Article

    $ C \frac{{\rm{d}} T}{{\rm{d}} t}=A P\left(T, T_{\rm{amb}}\right)\;, $(8)

    View in Article

    $ C=A \sum\limits_{j} c_{j} \rho_{j} t_{j}+C_{0}\;, $(9)

    View in Article

    Minkyung Kim, Dasol Lee, Younghwan Yang, Junsuk Rho. Switchable diurnal radiative cooling by doped VO2[J]. Opto-Electronic Advances, 2021, 4(5): 200006-1
    Download Citation