• Chinese Journal of Quantum Electronics
  • Vol. 21, Issue 3, 273 (2004)
[in Chinese]1、2、*, [in Chinese]3、4, [in Chinese]5, and [in Chinese]5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3Department of Physics,Tokyo University of Science,1-3 Kagurazaka,Shinjuku-ku,162-8601,Tokyo,Japan
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Study and prospect of Si-based optoelectronics[J]. Chinese Journal of Quantum Electronics, 2004, 21(3): 273 Copy Citation Text show less
    References

    [1] Peng Yingcai,Zhao Xinwei,Fu Guangsheng.Progress of Si-based nanocrystalline luminescent materials [J].Chinese Science Bulletin,2002,47(15):1233-1242.

    [2] Masini G,Colace L,et al.Si based optoelectronics for communications [J].Mater.Sci.Eng.,2002,B89:2-9.

    [3] Canham L,Aston R.Will a chip every day keep the doctor away [J].Physics World,2001,27-31.

    [5] Grimaldi M G,Bongiorno C,Spinella C,et al.Luminescence from β-FeSi2 precipitates in Si.Ⅰ:Morphology and epitaxial relationship [J].Phys.Rev.,2002,B66(8):085319-1-085319-10.

    [6] Martinelli L,Grilli E,Migas D B,et al.Luminescence fromβ-FeSi2 precipitates in Si.Ⅱ:Origin and nature of the photoluminescence [J].Phys.Rev.,2002,B66(8):085320-1-085320-9.

    [7] Zhang P,Crespi V H,Chang E,et al.Computational design of direct-band semiconductor that lattice-match silicon [J].Nature,2001,490:69-71.

    [8] Tit N,Dharma-Wardana M W C.Existence of direct bandgap transition in Si/SiO2 superlattice [J].Phys.Lett.,1999,254:233-238.

    [9] Rogozhina E,Belomoin G,Smith A,et al.Si-N linkage in ultrabright,ultrasmall Si nanoparticles [J].Appl.Phys.Lett.,2001,78(23):3711-3713

    [10] Nishida M.Electronic structure calculations of ultrasmall Si quantum boxes:Characteristics of band-edge states [J].Phys.Rev.,2002,B66(12):125313-1-125313-10.

    [11] Belomoin G,Rogozhina E,Therrien J,et al.Effects of surface termination on the band gap of ultrabright Si29nanoparticles:Experiments and computational models [J].Phys.Rev.,2002,B65(19):193406-1-193406-4.

    [13] Li J L,Jia J F,et al.Spontaneous assembly of perfectly ordered indentical-size nanocluster arrays [J].Phys.Rev.Lett.,2002,88(6):066101-1-066101-3.

    [14] Kanayama T,Miyoko O,Watanabe M,et al.Nanofabrication using structure controlled hydro genated Si clusters deposited on Si surfaces [J].J.Vac.Sci.Technol.,2000,B18(6):3497-3500.

    [15] Mori H,Nagai H,Yanagawa T,et al.Formation of Ge quantum dots on boronreconstructed surface/Si(ill)[J].Mater.Sci.Eng.,2002,B89:188-190.

    [16] Shi H Q,Radny M W,Smith P V.Electronic structure of the Si(111)surface [J].Phys.Rev.,2002,B66(8):085329-1-085329-8.

    [18] Jin G,Liu J L,Wang K L.Regimented placement of self-assembled Ge dots on selectively grown Si mesas [J].Appl.Phys.Lett.,2000,76(24):3591-3593.

    [19] Vescan L,Stoica T.Luminescence of laterally ordered Ge islands along(100)directions [J].J.Appl.Phys.,2002,91(12):10119-10126.

    [20] Omi H,Bottomley D J.Homma Y,et al.Shape of atomic step on Si(111)under localized stress [J].Phys.Rev.,2002,B66(8):085303-1-085303-5.

    [21] Bottomley D J,Omi H,Kobayashi Y,et al.Origin of self-assembled step and terrace formation at the Si(001)-SiO2 interface [J].Phys.Rev.,2002,66(3):035301-1-035301-5.

    [22] Miyazaki S,Hamamoto Y,Yoshida E,et al.Control of self-assembling formation of nanometer silicon dots by low pressure chemical vapor deposition [J].Thin SoLid Films,2000,369:55-59.

    [23] Hirano Y,Sato F,Miyazaki S,et al.Photoconductive properties of nanometer-sized Si dot multilayers [J].Appl.Phys.Lett.,2001,79(14):2255-2257

    [25] Shirai H,Fujimura Y,Jung S.Formation of nanocrystalline SiLicon dot from chlorinated materials by RF plasmaenhanced chemical vapor deposition [J].Thin Solid films,2002,407:12-17.

    [26] Yasuda T,Nishizawa M,Yamasaki S.Resistless pattern definition and Si selective-area deposition using an ultrathin SiO2 mask layer treated by SiHCla [J].Appl.Phys.Lett.,2000,76(22):3203-3205.

    [27] Miyata N,Watanabe H,Ichikawa M.Selective growth of nanocrystalline Si dots using an ultrathin-Sioxide/oxynitride mask [J].Appl.Phys.Lett.,2000,77(11):1620-1622.

    [28] Kato K,Nakasaki Y,Uda T.Atomic processes of NO oxynitridation an Si(100)surface [J].Phys.Rev.,2002,B66(7):075308-1-075308-5.

    [29] Zacharias M,Heitmann J,Scholz R,et al.Size-controlled highly luminescent silicon nanocrystals:A SiO/SiO2superlattice approach [J].Appl.Phys.Lett.,2002,80(4):661-663.

    [30] Miller T,Heinig K H,Moller W.Size and location control of Si nanocrystals at ion beam synthesis in thin SiO2films [J].Appl.Phys.Lett.,2002,81(16):3049-3051.

    [31] Khriachtchev L,Novikov S,Lahtinen J.Thermal annealing of Si/SiO2 materials:Modification of structural and photoluminescence emission properties [J].J.Appl.Phys.,2002,92(10):5856-5862.

    [32] Neshva D,Raptis C,Perakis A,et al.Raman scattering and photoluminescence from Si namoparticles in annealling SiOx thin films [J].J.Appl.Phys.,2002,92(8):4678-4683.

    [34] Usami N,Araki Y,Ito Y,et al.Modification of the growth mode of Ge on Si by buried Ge islands [J].Appl.Phys.Lett.,2000,76(25):3723-3725.

    [35] Miura M,Hartmann J M,Zhang J,et al.Formation process and ordering of self-assembled Ge islands [J].Thin Solid Films,2000,369:104-107.

    [36] Takamiya H,Miura M,Mitsui J,et al.Size reduction of the Ge islands by utizing the strain fields from the lower temperature grown hut-clusters buried in the matrix [J].Mater.Sci.Eng.,2002,B89:58-61.

    [37] Herbst M,Schramm C,Brunner K,et al.Structural and optical properties of vertical correlated Ge island layer grown at low temperatures [J].Mater.Sci.Eng.,2002,B89:54-59.

    [38] Boucaud P,Thanh V L,Yam V,et al.Aspects of Ge/Si self-assembled quantum dots [J].Mater.Sci.Eng.,2002,B89:36-44.

    [39] Derivaz M,Noe P,Rouviere J L,et al.Epitaxial growth of germanium dots on silicon(001)surface covered by a very thin dielectric layer [J].Mater.Sci.Eng.,2002,B89:191-195.

    [40] Leifeld O,Beyer A,Griitzmacher D,et al.Nucleation of Ge dot on the C-alloyed Si(001)surface [J].Phys.Rev.,2002,B66(12):125312-1-125312-4.

    [41] Omi H,Bottomley D J,Homma Y,et al.Wafer-scale strain engineering on silicon for fabrication of ultimately confrolled nanostructures [J].Phys.Rev.,2003,B67:115302-1-115302-10.

    [42] Zhao X W,Isshiki H,Aoyagi Y,et al.Formation and device application of Er-doped nanocrystalline Si using laser ablation [J].Mater.Sci.Eng.,2000,B74:197-201.

    [43] Ng W L,Lourenc M A,Gwilliam R M,et al.An efficient room-temperature silicon-based light-emitting diode [J].Nature,2001,410:192-194.

    [44] Takamiya H,Miura M,Usami N,et al.Drastic modification of the growth mode of Ge quantum dots on Si by using boron adlayer [J].Thin Solid Film,2000,369:84-87.

    [46] Iacona F,Pacifici D,Irrera A,et al.Electroluminescence at 1.54μm in Er-doped Si nanocluster-based edvices[J].Appl.Phys.Lett.,2002,81(17):3242-3244.

    [47] Zhang Q,Filios A,et al.Ultra-stable visible electroluminescence from crystalline c-Si/O superlattice [J].Physica,2000,E8:365-368.

    [48] Elkurdi M,Boucaud P,Sauvage S,et al.Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots [J].Appl.Phys.Lett.,2002,80(3):509-511.

    [49] Elkurdi M,Boucaud P,Sauvage S,et al.Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands [J].J.Appl.Phys.,2002,92(4):1858-1861.

    [50] Zhao X W,Komuro S,Isshiki H,et al.Fabrication and stimulation emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation [J].Appl.Phys.Lett.,1999,74(1):120-122.

    [51] Kik P G,Polman A.Exciton-erbium energy transfer in Si nanocrystal-doped SiO2 [J].Mater.Sci.Eng.,2001,B81:3-8.

    [52] Iacona F,Franzo g,Moreira E C,et al.Silicon nanocrystals and Er3+ ions in an optical microcavity [J].J.Appl.Phys.,2001,89(12):8354-8356.

    [53] Lopez H A,Fauchet P M.Infrared LEDS and microcavities based on erbium doped silicon nanocomposites [J].Mater.Sci.Eng.,2001,B81:91-96.

    [54] Toshikiyo K,Fujii M,Hayashi S,et al.Enhanced optical properties of Si1-xGex alloy nanocrystals in a planar microcarity [J].J.Appl.Phys.,2003,93(4):2178-2181.

    [56] Blanco A,Chomski E,Grabtchak S,et al.Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micormetres [J].Nature,2000,405:437-439.

    [57] Lopez H A,Fauchet M F.Erbium emission from porous silicon one-dimensional photonic bandgap structures [J].Appl.Phys.Lett.,2000,77(23):3704-3706.

    [58] Viasov Y A,Bo X Z,Sturm J C,et al.On-chip natural assembly of silicon photonic bandgap crystals [J].Nature,2001,414:289-293.

    [59] Pavesi L,Negro L D,Mazzoieni C,et al.Optical gain in silicon nanocrystals.Nature,2000,408:440-444.

    [60] Khriachtchev L,Rasanen M.Optical gain in Si/SiO2 lattice:Experimental evidence with nanosecond pulses [J].Appl.Phys.Lett.,2001,79(9):1249-1251.

    [61] Canham L.Let there be light [J].Nature,2001,409:974-976.

    [62] Duan X F,Huang Y,Agarwal R,et al.Single-nanowireelectrically driven lasers [J].Nature,2003,421:241-245.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Study and prospect of Si-based optoelectronics[J]. Chinese Journal of Quantum Electronics, 2004, 21(3): 273
    Download Citation