• Journal of Semiconductors
  • Vol. 43, Issue 6, 062804 (2022)
Xuemin Zhang1、2, Changling Yan1, Jinghang Yang1, Chao Pang1, Yunzhen Yue1, Chunhong Zeng1、2, and Baoshun Zhang2
Author Affiliations
  • 1State Key Laboratory on High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
  • 2Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • show less
    DOI: 10.1088/1674-4926/43/6/062804 Cite this Article
    Xuemin Zhang, Changling Yan, Jinghang Yang, Chao Pang, Yunzhen Yue, Chunhong Zeng, Baoshun Zhang. Vertical Schottky ultraviolet photodetector based on graphene and top–down fabricated GaN nanorod arrays[J]. Journal of Semiconductors, 2022, 43(6): 062804 Copy Citation Text show less
    References

    [1] A Dubey, R Mishra, Y H Hsieh et al. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv Sci, 7, 2002274(2020).

    [2] A Gundimeda, S Krishna, N Aggarwal et al. Fabrication of non–polar GaN based highly responsive and fast UV photodetector. Appl Phys Lett, 110, 103507(2017).

    [3] L Liu, C Yang, A Patanè et al. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale, 9, 8142(2017).

    [4] R X Yu, G D Wang, Y L Shao et al. From bulk to porous GaN crystal: Precise structural control and its application in ultraviolet photodetectors. J Mater Chem C, 7, 14116(2019).

    [5] S Fang, D H Wang, X N Wang et al. Tuning the charge transfer dynamics of the nanostructured GaN photoelectrodes for efficient photoelectrochemical detection in the ultraviolet band. Adv Funct Mater, 31, 2103007(2021).

    [6] D H Wang, X Liu, S Fang et al. Pt/AlGaN nanoarchitecture: Toward high responsivity, self-powered ultraviolet-sensitive photodetection. Nano Lett, 21, 120(2021).

    [7] M Razeghi, A Rogalski. Semiconductor ultraviolet detectors. J Appl Phys, 79, 7433(1996).

    [8] O Katz, V Garber, B Meyler et al. Gain mechanism in GaN Schottky ultraviolet detectors. Appl Phys Lett, 79, 1417(2001).

    [9] C J Lee, S B Kang, H G Cha et al. GaN metal–semiconductor–metal UV sensor with multi-layer graphene as Schottky electrodes. Jpn J Appl Phys, 54, 06FF08(2015).

    [10] S J Wang, Y Geng, Q B Zheng et al. Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815(2010).

    [11] G Yang, L H Li, W B Lee et al. Structure of graphene and its disorders: A review. Sci Technol Adv Mater, 19, 613(2018).

    [12] J Wang, J Song, X Mu et al. Optoelectronic and photoelectric properties and applications of graphene-based nanostructures. Mater Today Phys, 13, 100196(2020).

    [13] F Lin, S W Chen, J Meng et al. Graphene/GaN diodes for ultraviolet and visible photodetectors. Appl Phys Lett, 105, 073103(2014).

    [14] A V Babichev, H Zhang, P Lavenus et al. GaN nanowire ultraviolet photodetector with a graphene transparent contact. Appl Phys Lett, 103, 201103(2013).

    [15] K Xu, C Xu, Y Y Xie et al. Graphene GaN-based Schottky ultraviolet detectors. IEEE Trans Electron Devices, 62, 2802(2015).

    [16] S Y Wang, R S Chen, Y Ren et al. Highly-rectifying graphene/GaN Schottky contact for self-powered UV photodetector. IEEE Photonics Technol Lett, 33, 213(2021).

    [17] H J Tian, Q L Liu, A Q Hu et al. Hybrid graphene/GaN ultraviolet photo-transistors with high responsivity and speed. Opt Express, 26, 5408(2018).

    [18] F Yu, D Rümmler, J Hartmann et al. Vertical architecture for enhancement mode power transistors based on GaN nanowires. Appl Phys Lett, 108, 213503(2016).

    [19] D H Wang, X Liu, Y Kang et al. Bidirectional photocurrent in p–n heterojunction nanowires. Nat Electron, 4, 645(2021).

    [20] F Yu, S B Yao, F Römer et al. GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors. Nanotechnology, 28, 095206(2017).

    [21] A Prabaswara, J W Min, R C Subedi et al. Direct growth of single crystalline GaN nanowires on indium tin oxide-coated silica. Nanoscale Res Lett, 14, 45(2019).

    [22] X D Zhang, T He, W B Tang et al. Thermal oxidation of AlGaN nanowires for sub-250 nm deep ultraviolet photodetection. J Phys D, 53, 495105(2020).

    [23] G N Liu, B M Wen, T Xie et al. Top–down fabrication of horizontally-aligned gallium nitride nanowire arrays for sensor development. Microelectron Eng, 142, 58(2015).

    [24] M Behzadirad, M Nami, N Wostbrock et al. Scalable top-down approach tailored by interferometric lithography to achieve large-area single-mode GaN nanowire laser arrays on sapphire substrate. ACS Nano, 12, 2373(2018).

    [25] S K Bae, H Kim, Y Lee et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 5, 574(2010).

    [26] A C Ferrari, J C Meyer, V Scardaci et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401(2006).

    [27] H C Zhang, F Z Liang, K Song et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W. Appl Phys Lett, 118, 242105(2021).

    [28] C H Zeng, W K Lin, T He et al. Ultraviolet-infrared dual-color photodetector based on vertical GaN nanowire array and graphene. Chin Opt Lett, 18, 112501(2020).

    [29] G Z Shen, H R Chen, Z Lou. Growth of aligned SnS nanowire arrays for near infrared photodetectors. J Semicond, 41, 042602(2020).

    [30] Y Wu, X Yan, X Zhang et al. A monolayer graphene/GaAs nanowire array Schottky junction self-powered photodetector. Appl Phys Lett, 109, 183101(2016).

    [31] T He, Y K Zhao, X D Zhang et al. Solar-blind ultraviolet photodetector based on graphene/vertical Ga2O3 nanowire array heterojunction. Nanophotonics, 7, 1557(2018).

    [32] M Kumar, H Jeong, K Polat et al. Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector. J Phys D, 49, 275105(2016).

    Xuemin Zhang, Changling Yan, Jinghang Yang, Chao Pang, Yunzhen Yue, Chunhong Zeng, Baoshun Zhang. Vertical Schottky ultraviolet photodetector based on graphene and top–down fabricated GaN nanorod arrays[J]. Journal of Semiconductors, 2022, 43(6): 062804
    Download Citation