• Photonics Research
  • Vol. 10, Issue 6, 1325 (2022)
Zhou Zheng1, Zhengying Li1、2、3、*, Xuelei Fu1, and Xin Gui2
Author Affiliations
  • 1Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
  • 2National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan 430070, China
  • 3State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.1364/PRJ.450127 Cite this Article Set citation alerts
    Zhou Zheng, Zhengying Li, Xuelei Fu, Xin Gui. Coherent-detection-based distributed acoustic impedance sensing enabled by a chirped fiber Bragg grating array[J]. Photonics Research, 2022, 10(6): 1325 Copy Citation Text show less
    References

    [1] X. Bao, L. Chen. Recent progress in distributed fiber optic sensors. Sensors, 12, 8601-8639(2012).

    [2] A. H. Hartog. An Introduction to Distributed Optical Fibre Sensors(2017).

    [3] P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, P. R. Ohodnicki. Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev., 6, 041302(2019).

    [4] X. Bao, Y. Wang. Recent advancements in Rayleigh scattering-based distributed fiber sensors. Adv. Devices Instrum., 2021, 8696571(2021).

    [5] X. Bao, Z. Zhou, Y. Wang. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection. PhotoniX, 2, 14(2021).

    [6] Z. Ding, K. Sun, K. Liu, J. Jiang, D. Yang, Z. Yu, J. Li, T. Liu. Distributed refractive index sensing based on tapered fibers in optical frequency domain reflectometry. Opt. Express, 26, 13042-13054(2018).

    [7] P. Xu, X. Yu, Z. Chen, L. Sheng, J. Liu, S. Zhou, K. Wen, O. Xu, X. Dong, J. Yang, Y. Qin. Distributed refractive index sensing based on bending-induced multimodal interference and Rayleigh backscattering spectrum. Opt. Express, 29, 21530-21538(2021).

    [8] C. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, Y. J. Rao. Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing. Lab Chip, 18, 2741-2748(2018).

    [9] Y. Antman, A. Clain, Y. London, A. Zadok. Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering. Optica, 3, 510-516(2016).

    [10] N. Hayashi, Y. Mizuno, K. Nakamura, S. Y. Set, S. Yamashita. Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers. Opt. Express, 25, 2239-2244(2017).

    [11] D. M. Chow, L. Thévenaz. Forward Brillouin scattering acoustic impedance sensor using thin polyimide-coated fiber. Opt. Lett., 43, 5467-5470(2018).

    [12] Z. Zheng, Z. Li, X. Fu, L. Wang, H. Wang. Multipoint acoustic impedance sensing based on frequency-division multiplexed forward stimulated Brillouin scattering. Opt. Lett., 45, 4523-4526(2020).

    [13] G. Bashan, H. H. Diamandi, Y. London, E. Preter, A. Zadok. Optomechanical time-domain reflectometry. Nat. Commun., 9, 2991(2018).

    [14] H. H. Diamandi, Y. London, G. Bashan, A. Zadok. Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide. APL Photon., 4, 016105(2019).

    [15] C. Pang, Z. Hua, D. Zhou, H. Zhang, L. Chen, X. Bao, Y. Dong. Opto-mechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing. Optica, 7, 176-184(2020).

    [16] Z. Hua, D. Ba, D. Zhou, Y. Li, Y. Wang, X. Bao, Y. Dong. Non-destructive and distributed measurement of optical fiber diameter with nanometer resolution based on coherent forward stimulated Brillouin scattering. Light Adv. Manuf., 2, 25(2021).

    [17] Y. K. Dong, Z. Hua, D. Ba, Y. Li. Polarization separation assisted opto-mechanical time-domain analysis with sub-meter resolution. Opt. Lett., 46, 5886-5889(2021).

    [18] D. M. Chow, Z. Yang, M. A. Soto, L. Thevenaz. Distributed forward Brillouin sensor based on local light phase recovery. Nat. Commun., 9, 2990(2018).

    [19] S. Zaslawski, Z. Yang, S. Wang, L. Thévenaz. Distributed forward stimulated Brillouin scattering measurement using broadband BOTDR. Proc. SPIE, 11199, 1119923(2019).

    [20] X. Fu, J. Wu, Z. Li, Y. Tong, X. Gui, H. Wang. Fiber-based large dynamic range vibration sensing with dual-wavelength phase unwrapping. J. Lightwave Technol., 37, 6090-6096(2019).

    [21] J. Wang, Z. Li, X. Fu, X. Gui, J. Zhan, H. Wang, D. Jiang. High-sensing-resolution distributed hot spot detection system implemented by a relaxed pulsewidth. Opt. Express, 28, 16045-16056(2020).

    [22] R. M. Shelby, M. D. Levenson, P. W. Bayer. Guided acoustic-wave Brillouin scattering. Phys. Rev. B, 31, 5244-5252(1985).

    [23] M. Alem, M. A. Soto, M. Tur, L. Thévenaz. Analytical expression and experimental validation of the Brillouin gain spectral broadening at any sensing spatial resolution. 25th Optical Fiber Sensors Conference (OFS), 1-4(2017).

    [24] Y. Ou, C. Zhou, L. Qian, D. Fan, C. Cheng, H. Guo, Z. Xiong. Large WDM FBG sensor network based on frequency-shifted interferometry. IEEE Photon. Technol. Lett., 29, 535-538(2017).

    [25] J. Wu, Z. Li, X. Fu, M. Fan, X. Gui, H. Wang. High dynamic range distributed acoustic sensing based on dual-wavelength fiber Bragg grating pairs. Opt. Lett., 46, 4402-4405(2021).

    [26] H. Guo, J. Tang, X. Li, Y. Zheng, H. Yu, H. Yu. On-line writing identical and weak fiber Bragg grating arrays. Chin. Opt. Lett., 11, 030602(2013).

    [27] B. Xu, J. He, B. Du, X. Xiao, X. Xu, C. Fu, J. He, C. Liao, Y. Wang. Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing. Opt. Express, 29, 32615-32626(2021).

    Zhou Zheng, Zhengying Li, Xuelei Fu, Xin Gui. Coherent-detection-based distributed acoustic impedance sensing enabled by a chirped fiber Bragg grating array[J]. Photonics Research, 2022, 10(6): 1325
    Download Citation