• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 016004 (2023)
Lin Wang1、†, Xi Xiao2、3, Lu Xu3, Yifan Liu1, Yu Chen1, Yuan Yu1、4、*, and Xinliang Zhang1、4、*
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Wuhan, China
  • 2China Information and Communication Technologies Group Corporation, State Key Laboratory of Optical Communication Technologies and Networks, Wuhan, China
  • 3National Information Optoelectronics Innovation Center, Wuhan, China
  • 4Optics Valley Laboratory, Wuhan, China
  • show less
    DOI: 10.1117/1.APN.2.1.016004 Cite this Article Set citation alerts
    Lin Wang, Xi Xiao, Lu Xu, Yifan Liu, Yu Chen, Yuan Yu, Xinliang Zhang. On-chip tunable parity‐time symmetric optoelectronic oscillator[J]. Advanced Photonics Nexus, 2023, 2(1): 016004 Copy Citation Text show less
    References

    [1] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [2] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314-335(2009).

    [3] L. Maleki. The optoelectronic oscillator. Nat. Photonics, 5, 728-730(2011).

    [4] X. S. Yao, L. Maleki. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B, 13, 1725-1735(1996).

    [5] X. S. Yao, L. Maleki. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron., 36, 79-84(2000).

    [6] X. S. Yao, L. Davis, L. Maleki. Coupled optoelectronic oscillators for generating both RF signal and optical pulses. J. Lightwave Technol., 18, 73-78(2000).

    [7] E. Salik, N. Yu, L. Maleki. An ultralow phase noise coupled optoelectronic oscillator. IEEE Photonics Technol. Lett., 19, 444-446(2007).

    [8] S. Poinsot et al. Continuous radio‐frequency tuning of an optoelectronic oscillator with dispersive feedback. Opt. Lett., 27, 1300-1302(2002).

    [9] Y. Liu et al. Integrated microwave photonic filters. Adv. Opt. Photonics, 12, 485-555(2020).

    [10] W. Li, J. Yao. A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase‐modulation to intensity‐modulation conversion using a phase shifted fiber Bragg grating. IEEE Trans. Microw. Theor. Tech., 60, 1735-1742(2012).

    [11] W. Zhang, J. Yao. Silicon photonic integrated optoelectronic oscillator for frequency‐tunable microwave generation. J. Lightwave Technol., 36, 4655-4663(2018).

    [12] H. Tang et al. Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra‐narrow passband. Opt. Lett., 43, 2328-2331(2018).

    [13] Y. Liu et al. Observation of parity‐time symmetry in microwave photonics. Light Sci. Appl., 7, 38(2018).

    [14] J. Zhang, J. Yao. Parity‐time‐symmetric optoelectronic oscillator. Sci. Adv., 4, eaar6782(2018).

    [15] Q. Ding et al. A precisely frequency‐tunable parity‐time‐symmetric optoelectronic oscillator. J. Lightwave Technol., 38, 6569-6577(2020).

    [16] C. Teng et al. Fine tunable PT‐symmetric optoelectronic oscillator based on laser wavelength tuning. IEEE Photonics Technol. Lett., 32, 47-50(2020).

    [17] Z. Fan et al. Hybrid frequency‐tunable parity‐time symmetric optoelectronic oscillator. J. Lightwave Technol., 38, 2127-2133(2020).

    [18] J. Zhang et al. Parity‐time symmetry in wavelength space within a single spatial resonator. Nat. Commun., 11, 3217(2020).

    [19] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [20] J. Tang et al. Integrated optoelectronic oscillator. Opt. Express, 26, 12257-12265(2018).

    [21] W. Zhang, J. P. Yao. Silicon photonic integrated optoelectronic oscillator for frequency‐tunable microwave generation. J. Lightwave Technol., 36, 4655-4663(2018).

    [22] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [23] H. Qiu et al. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator. J. Lightwave Technol., 36, 4312-4318(2018).

    [24] P. Liu et al. Parity‐time symmetric tunable OEO based on dual‐wavelength and cascaded PS‐FBGs in a single‐loop. Opt. Express, 29, 35377-35386(2021).

    [25] M. Shi et al. Brillouin-based dual-frequency microwave signals generation using polarization-multiplexing modulation. Opt. Express, 27, 24847-24856(2019).

    [26] P. Liu et al. Parity‐time symmetric frequency‐tunable optoelectronic oscillator based on a Si3N4 microdisk resonator. Appl. Opt., 60, 1930-1936(2021). https://doi.org/10.1364/AO.417003

    [27] P. Dong et al. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt. Express, 18, 20298-20304(2010).

    [28] D. Eliyahu, D. Seidel, L. Maleki. Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system(2008).

    [29] F. Zou et al. Parity-time symmetric optoelectronic oscillator based on an integrated mode-locked laser. IEEE J. Quantum Electron., 57, 1-9(2021).

    [30] M. Merklein et al. Widely tunable, low phase noise microwave source based on a photonic chip. Opt. Lett., 41, 4633-4636(2016).

    [31] L. Zhang et al. Ultrahigh-Q silicon racetrack resonators. Photonics Res., 8, 684-689(2020).

    [32] L. Zhang et al. Ultralow-loss silicon photonics beyond the singlemode regime. Laser Photonics Rev., 16, 2100292(2022).

    [33] K. K. Lee et al. Fabrication of ultralow‐loss Si/SiO2 waveguides by roughness reduction. Opt. Lett., 26, 1888-1890(2001). https://doi.org/10.1364/OL.26.001888

    [34] Y. Fan et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express, 28, 21713-21728(2020). https://doi.org/10.1364/OE.398906

    [35] A. J. Mercante et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810-14816(2018).

    [36] W. Jin et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [37] Y. Zhu et al. High-speed and high-power germanium photodetector based on a trapezoidal absorber. Opt. Lett., 47, 3263-3266(2022).

    [38] A. H. Atabaki et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).

    [39] Z. Xuan, L. Du, F. Aflatouni. Frequency locking of semiconductor lasers to RF oscillators using hybrid‐integrated optoelectronic oscillators with dispersive delay lines. Opt. Express, 27, 10729-10737(2019).

    Lin Wang, Xi Xiao, Lu Xu, Yifan Liu, Yu Chen, Yuan Yu, Xinliang Zhang. On-chip tunable parity‐time symmetric optoelectronic oscillator[J]. Advanced Photonics Nexus, 2023, 2(1): 016004
    Download Citation