• Photonics Research
  • Vol. 9, Issue 9, 1829 (2021)
Hua Li1、2, Zhengyi Hao1、2, Jiangfeng Huang1、2, Tingting Lu1、2, Qian Liu1、2、3, and Ling Fu1、2、3、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3School of Biomedical Engineering, Hainan University, Haikou 570228, China
  • show less
    DOI: 10.1364/PRJ.431767 Cite this Article Set citation alerts
    Hua Li, Zhengyi Hao, Jiangfeng Huang, Tingting Lu, Qian Liu, Ling Fu. 500 μm field-of-view probe-based confocal microendoscope for large-area visualization in the gastrointestinal tract[J]. Photonics Research, 2021, 9(9): 1829 Copy Citation Text show less
    References

    [1] A. F. Gmitro, D. Aziz. Confocal microscopy through a fiber-optic imaging bundle. Opt. Lett., 18, 565-567(1993).

    [2] R. A. Sutton, P. Sharma. Imaging for Barrett’s esophagus: state of the art. Curr. Opin. Gastroen., 35, 395-400(2019).

    [3] Z. Li, X. Zuo, T. Yu, X. Gu, C. Zhou, C. Li, R. Ji, Y. Li. Confocal laser endomicroscopy for in vivo detection of gastric intestinal metaplasia: a randomized controlled trial. Endoscopy, 46, 282-290(2014).

    [4] Y. Tian, Y. Zheng, G. Teng, J. Li, H. Wang. Imbalanced mucosal microcirculation in the remission stage of ulcerative colitis using probe-based confocal laser endomicroscopy. BMC Gastroenterol., 19, 114-122(2019).

    [5] H. Li, X. Hou, R. Lin, M. Fan, S. Pang, L. Jiang, Q. Liu, L. Fu. Advanced endoscopic methods in gastrointestinal diseases: a systematic review. Quant. Imag. Med. Surg., 9, 905-920(2019).

    [6] O. Pech, T. Rabenstein, H. Manner, M. C. Petrone, J. Pohl, M. Vieth, M. Stolte, C. Ell. Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus. Clin. Gastroenterol. Hepatol., 6, 89-94(2008).

    [7] B. Viellerobe, A. Osdoit, C. Cavé, F. Lacombe, S. Loiseau, B. Abrat. Mauna Kea technologies’ F400 prototype: a new tool for in vivo microscopic imaging during endoscopy. Proc. SPIE, 6082, 60820C(2006).

    [8] J. Wang, M. Yang, L. Yang, Y. Zhang, J. Yuan, Q. Liu, X. Hou, L. Fu. A confocal endoscope for cellular imaging. Engineering, 1, 351-360(2015).

    [9] G. Perrod, G. Rahmi, L. Pidial, S. Camilleri, A. Bellucci, A. Casanova, T. Viel, B. Tavitian, C. Cellier, O. Clement. Cell sheet transplantation for esophageal stricture prevention after endoscopic submucosal dissection in a porcine model. PLOS ONE, 11, e0148249(2016).

    [10] T. Hassan, L. Thiberville, C. Hermant, S. Lachkar, N. Piton, F. Guisier, M. Salaun. Assessing the feasibility of confocal laser endomicroscopy in solitary pulmonary nodules for different part of the lungs, using either 0.6 or 1.4  mm probes. PLOS ONE, 12, e0189846(2017).

    [11] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).

    [12] S. W. Oh, J. A. Harris, L. Ng, B. Winslow, N. Cain, S. Mihalas, Q. Wang, C. Lau, L. Kuan, A. M. Henry, M. T. Mortrud, B. Ouellette, T. N. Nguyen, S. A. Sorensen, C. R. Slaughterbeck, W. Wakeman, Y. Li, D. Feng, A. Ho, E. Nicholas, K. E. Hirokawa, P. Bohn, K. M. Joines, H. Peng, M. J. Hawrylycz, J. W. Phillips, J. G. Hohmann, P. Wohnoutka, C. R. Gerfen, C. Koch, A. Bernard, C. Dang, A. R. Jones, H. Zeng. A mesoscale connectome of the mouse brain. Nature, 508, 207-214(2014).

    [13] M. N. Economo, N. G. Clack, L. D. Lavis, C. R. Gerfen, K. Svoboda, E. W. Myers, J. Chandrashekar. A platform for brain-wide imaging and reconstruction of individual neurons. eLife, 5, e10566(2016).

    [14] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [15] A. Pan, C. Zuo, B. Yao. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. Rep. Prog. Phys., 83, 096101(2020).

    [16] C. A. Werley, M. P. Chien, A. E. Cohen. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation. Biomed. Opt. Express, 8, 5794-5813(2017).

    [17] G. Mcconnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, W. B. Amos. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout. eLife, 5, e18659(2016).

    [18] N. J. Sofroniew, D. Flickinger, J. King, K. Svoboda. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife, 5, e14472(2016).

    [19] V. N. Mahajan. Optical Imaging and Aberrations: Part I. Ray Geometrical Optics, 141-242(1998).

    [20] N. Ji, J. Freeman, S. L. Smith. Technologies for imaging neural activity in large volumes. Nat. Neurosci., 19, 1154-1164(2016).

    [21] L. Yang, J. Wang, G. Tian, J. Yuan, Q. Liu, L. Fu. Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope. Opt. Express, 24, 473-484(2016).

    [22] R. Drougard. Optical transfer properties of fiber bundles. J. Opt. Soc. Am., 54, 907-914(1964).

    [23] J. Lv, B. Xue, T. Li, Y. H. He, X. L. Ma, X. T. Yan. Optical system design of subminiature endoscope with imaging fiber bundle. Proc. SPIE, 10153, 101530L(2016).

    [24] Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, A. F. Gmitro. Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt., 38, 7133-7144(1999).

    [25] A. R. Rouse. Multispectral confocal microendoscope for in-vivo imaging(2004).

    [26] P. Burns. Slanted-edge MTF for digital camera and scanner analysis. Is and Ts Pics Conference, 135-138(2000).

    [27] J. Wang, H. Li, R. Xu, Q. Liu, L. Fu. A confocal endomicroscopy for cellular imaging. International Conference on Photonics and Imaging in Biology and Medicine, W3A.29(2017).

    [28] N. Savoire, B. André, T. Vercauteren. Online blind calibration of non-uniform photodetectors: application to endomicroscopy. Med. Image Comput. Comput. Assist. Interv., 15, 639-646(2012).

    [29] Y. Ohta, T. Kobayashi, K. Nishida, M. Nagata, I. Ishiguro. Therapeutic effect of Oren-Gedoku-To extract on stress-induced acute gastric mucosal lesions in rats. Phytother. Res., 13, 588-592(1999).

    [30] H. Kitagawa, M. Fujiwara, Y. Osumi. Effects of water-immersion stress on gastric secretion and mucosal blood flow in rats. Gastroenterology, 77, 298-302(1979).

    [31] T. Fujikawa, A. Yamaguchi, I. Morita, H. Takeda, S. Nishibe. Protective effects of Acanthopanax senticosus HARMS from Hokkaido and its components on gastric ulcer in restrained cold water stressed rats. Biol. Pharm. Bull., 19, 1227-1230(1996).

    [32] K. Takagi, Y. Kasuya, K. Watanabe. Studies on the drugs for peptic ulcer. A reliable method for producing stress ulcer in rats. Chem. Pharm. Bull., 12, 465-472(1964).

    [33] T. Ishihara, T. Takada, Y. Shoji, Y. Uedono, N. Takeyama, T. Tanaka. Hyperammonemia reduces water immersion-restraint stress gastric ulcers in rats. Gen. Pharmacol., 31, 87-91(1998).

    [34] A. R. A. Moutaery. Effect of centrophenoxine on water-immersion restraint stress- and chemically-induced gastric ulcers in rats. Res. Commun. Mol. Pathol. Pharmacol., 113-114, 39-56(2003).

    [35] Z. R. Zhou, P. Huang, G. H. Song, Z. Zhang, W. Ding. Comparative proteomic analysis of rats subjected to water immersion and restraint stress as an insight into gastric ulcers. Mol. Med. Rep., 16, 5425-5433(2017).

    [36] S. N. S. Murthy, H. S. Cooper, H. Shim, R. S. Shah, S. A. Ibrahim, D. J. Sedergran. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Digest. Dis. Sci., 38, 1722-1734(1993).

    [37] D. N. Seril, J. Liao, G.-Y. Yang, C. S. Yang. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis, 24, 353-362(2003).

    [38] J. Wang, H. Li, G. Tian, Y. Deng, Q. Liu, L. Fu. Near-infrared probe-based confocal microendoscope for deep-tissue imaging. Biomed. Opt. Express, 9, 5011-5025(2018).

    [39] L. A. Dieleman, M. J. Palmen, H. Akol, E. Bloemena, A. S. Peña, S. G. Meuwissen, E. P. Van Rees. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol., 114, 385-391(1998).

    [40] J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun., 188, 267-273(2001).

    [41] P. M. Lane, S. Lam, A. McWilliams, J. C. Leriche, M. W. Anderson, C. E. Macaulay. Confocal fluorescence microendoscopy of bronchial epithelium. J. Biomed. Opt., 14, 024008(2009).

    [42] D. M. Huland, C. M. Brown, S. S. Howard, D. G. Ouzounov, I. Pavlova, K. Wang, D. R. Rivera, W. W. Webb, C. Xu. In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems. Biomed. Opt. Express, 3, 1077-1085(2012).

    [43] N. Dong, J. Cui, J. Xu. Variable-spot-size optical system for a dual-wavelength laser therapy device. J. Innov. Opt. Heal. Sci., 13, 2050018(2020).

    [44] J. Li, M. Wilson, A. Bower, M. Marjanovic, J. Chaney, R. Barkalifa, S. Boppart. Video-rate multimodal multiphoton imaging and three-dimensional characterization of cellular dynamics in wounded skin. J. Innov. Opt. Heal. Sci., 13, 2050007(2020).

    [45] C. Katada, M. Muto, K. Momma, M. Arima, H. Tajiri, C. Kanamaru, H. Ooyanagi, H. Endo, T. Michida, N. Hasuike, I. Oda, T. Fujii, D. Saito. Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae—a multicenter retrospective cohort study. Endoscopy, 39, 779-783(2007).

    [46] A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, A. F. Gmitro. Design and demonstration of a miniature catheter for a confocal microendoscope. Appl. Opt., 43, 5763-5771(2004).

    [47] M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, M. R. Descour. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy. Appl. Opt., 45, 2545-2554(2006).

    [48] M. Kyrish, J. Dobbs, S. Jain, X. Wang, D. Yu, R. Richards-Kortum, T. S. Tkaczyk. Needle-based fluorescence endomicroscopy via structured illumination with a plastic, achromatic objective. J. Biomed. Opt., 18, 096003(2013).

    [49] H. Jeon, M. Pawlowski, T. Tkaczyk. High-resolution endomicroscopy with a spectrally encoded miniature objective. Biomed. Opt. Express, 10, 1432-1445(2019).

    Hua Li, Zhengyi Hao, Jiangfeng Huang, Tingting Lu, Qian Liu, Ling Fu. 500 μm field-of-view probe-based confocal microendoscope for large-area visualization in the gastrointestinal tract[J]. Photonics Research, 2021, 9(9): 1829
    Download Citation